首页 > 论文 > 激光与光电子学进展 > 58卷 > 1期(pp:100001--1)

双光梳非线性光谱

Dual-Comb Nonlinear Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光学频率梳具有优异的时域和频域特性,已成为一种重要的光谱探测光源。基于两个具有不同重复频率的光频梳,可以实现具有异步光学采样特点的双光梳光谱探测。除了线性光谱探测应用,双光梳技术在非线性光谱探测中同样具有独特的优势。介绍了双光梳非线性光谱的探测原理,重点综述了双光梳技术在多维相干光谱和相干反斯托克斯拉曼光谱探测中的应用。分析并总结了双光梳技术在各种非线性光谱中的优势及光谱方法的技术特点、研究现状和发展趋势。

Abstract

Optical frequency combs have become an important light source for spectroscopy due to their excellent features in both time and frequency domains. Two frequency combs with slightly different repetition frequencies lead to asynchronous-optical-sampling dual-comb spectroscopic detection. Apart from linear spectroscopy, the dual-comb technique also features special advantages in nonlinear spectroscopic detection. The detection principle of dual-comb nonlinear spectroscopy is presented, and the applications of dual-comb technique in multidimensional coherent spectroscopy and coherent anti-Stokes Raman spectroscopy are reviewed. Also, the advantages of the dual-comb technique, the technical features, the current research status, and the development trend in nonlinear spectroscopy are analyzed and summarized.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.1

DOI:10.3788/LOP202158.0100001

所属栏目:综述

基金项目:国家自然科学基金(61775114)、 精密测试技术及仪器国家重点实验室自主项目

收稿日期:2020-04-20

修改稿日期:2020-05-25

网络出版日期:2021-01-01

作者单位    点击查看

卢敏健:清华大学精密仪器系精密测试技术及仪器国家重点实验室, 北京 100084
武韬:清华大学精密仪器系精密测试技术及仪器国家重点实验室, 北京 100084
李岩:清华大学精密仪器系精密测试技术及仪器国家重点实验室, 北京 100084
尉昊赟:清华大学精密仪器系精密测试技术及仪器国家重点实验室, 北京 100084

联系人作者:尉昊赟(luckiwei@mail.tsinghua.edu.cn)

【1】Udem T, Holzwarth R, H?nsch T W. Optical frequency metrology [J]. Nature. 2002, 416(6877): 233-237.

【2】Reichert J, Holzwarth R, Udem T, et al. Measuring the frequency of light with mode-locked lasers [J]. Optics Communications. 1999, 172(1/2/3/4/5/6): 59-68.

【3】Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science. 2000, 288(5466): 635-639.

【4】Nakamura T, Ito I, Kobayashi Y. Offset-free broadband Yb:fiber optical frequency comb for optical clocks [J]. Optics Express. 2015, 23(15): 19376-19381.

【5】Riehle F. Optical clock networks [J]. Nature Photonics. 2017, 11(1): 25-31.

【6】Picqué N, H?nsch T W. Frequency comb spectroscopy [J]. Nature Photonics. 2019, 13(3): 146-157.

【7】Udem T, Reichert J, Holzwarth R, et al. Accurate measurement of large optical frequency differences with a mode-locked laser [J]. Optics Letters. 1999, 24(13): 881-883.

【8】Udem T, Reichert J, Holzwarth R, et al. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser [J]. Physical Review Letters. 1999, 82(18): 3568-3571.

【9】Murphy M T, Udem T, Holzwarth R, et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs [J]. Monthly Notices of the Royal Astronomical Society. 2007, 380(2): 839-847.

【10】Wilken T, Curto G L, Probst R A, et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level [J]. Nature. 2012, 485(7400): 611-614.

【11】Temprana E, Myslivets E. Kuo B P P, et al. Overcoming Kerr-induced capacity limit in optical fiber transmission [J]. Science. 2015, 348(6242): 1445-1448.

【12】Cundiff S T, Weiner A M. Optical arbitrary waveform generation [J]. Nature Photonics. 2010, 4(11): 760-766.

【13】Cui P F, Yang L H, Lin J R, et al. Application of femtosecond optical frequency comb in precise absolute distance measurement [J]. Laser & Optoelectronics Progress. 2018, 55(12): 120011.
崔鹏飞, 杨凌辉, 林嘉睿, 等. 飞秒光学频率梳在精密绝对测距中的应用 [J]. 激光与光电子学进展. 2018, 55(12): 120011.

【14】Udem T, Holzwarth R, H?nsch T. Femtosecond optical frequency combs [J]. European Physical Journal: Special Topics. 2009, 172(1): 69-79.

【15】Nugent-Glandorf L, Neely T, Adler F, et al. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection [J]. Optics Letters. 2012, 37(15): 3285.

【16】Zhang W P, Chen X Y, Wu X J, et al. Adaptive cavity-enhanced dual-comb spectroscopy [J]. Photonics Research. 2019, 7(8): 883-889.

【17】Bjork B J, Bui T Q. Direct frequency comb measurement of OD + CO → DOCO kinetics [J]. Science. 2016, 354(6311): 444-448.

【18】Thorpe M J, Moll K D, Jones R J, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection [J]. Science. 2006, 311(5767): 1595-1599.

【19】Thorpe M J, Hudson D D, Moll K D, et al. Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm [J]. Optics Letters. 2007, 32(3): 307-309.

【20】Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb [J]. Nature Photonics. 2009, 3(2): 99-102.

【21】Spaun B, Changala P B, Patterson D, et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy [J]. Nature. 2016, 533(7604): 517-520.

【22】Bryan Changala P, Weichman M L, Lee K F, et al. Rovibrational quantum state resolution of the C60 fullerene [J]. Science. 2019, 363(6422): 49-54.

【23】Coddington I, Newbury N, Swann W. Dual-comb spectroscopy [J]. Optica. 2016, 3(4): 414-426.

【24】Schliesser A, Brehm M, Keilmann F, et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing [J]. Optics Express. 2005, 13(22): 9029-9038.

【25】Yang L, Shen X L, Yang K W, et al. Analysis and realization of adaptive dual-comb spectroscopy [J]. Acta Optica Sinica. 2018, 38(5): 0514002.
杨力, 沈旭玲, 杨康文, 等. 自适应双光梳光谱原理分析与实现 [J]. 光学学报. 2018, 38(5): 0514002.

【26】Zolot A M, Giorgetta F R, Baumann E, et al. Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2013, 118: 26-39.

【27】Okubo S, Iwakuni K, Inaba H, et al. Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm [J]. Applied Physics Express. 2015, 8(8): 082402.

【28】Giorgetta F R, Rieker G B, Baumann E, et al. Broadband phase spectroscopy over turbulent air paths [J]. Physical Review Letters. 2015, 115(10): 103901.

【29】Rieker G B, Giorgetta F R, Swann W C, et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths [J]. Optica. 2014, 1(5): 290.

【30】Polli D, Kumar V, Valensise C M, et al. Broadband coherent Raman scattering microscopy [J]. Laser & Photonics Reviews. 2018, 12(9): 1800020.

【31】Li Z L, Li S W. Zhang S L, el al. Coherent Raman scattering microscopy technique and its biomedical applications [J]. Chinese Journal of Lasers. 2020, 47(2): 0207005.
李姿霖, 李少伟, 张思鹭, 等. 相干拉曼散射显微技术及其在生物医学领域的应用 [J]. 中国激光. 2020, 47(2): 0207005.

【32】Lu J, Zhu S S, Cui X Y. Raman spectroscopic imaging technology and its biomedical applications [J]. Chinese Journal of Lasers. 2018, 45(3): 0307007.
路交, 朱姗姗, 崔笑宇. 拉曼光谱成像技术及其在生物医学中的应用 [J]. 中国激光. 2018, 45(3): 0307007.

【33】Ustione A, Piston D W. A simple introduction to multiphoton microscopy [J]. Journal of Microscopy. 2011, 243(3): 221-226.

【34】Cicerone M T, Camp C H. Histological coherent Raman imaging: a prognostic review [J]. Analyst. 2018, 143(1): 33-59.

【35】Camp C H, Cicerone M T. Chemically sensitive bioimaging with coherent Raman scattering [J]. Nature Photonics. 2015, 9(5): 295-305.

【36】Cheng J X, medicine[J]. Science. 350(6264): aaa8870 . 2015.

【37】Vanden-Hehir S, Tipping W, Lee M, et al. Raman imaging of nanocarriers for drug delivery [J]. Nanomaterials. 2019, 9(3): 341.

【38】Gupta A, Dorlhiac G, Streets A M. Quantitative imaging of lipid droplets in single cells [J]. Analyst. 2019, 144(3): 753-765.

【39】Weng Y X, Chen H L. Ultrafast spectroscopy: principles and techniques[M]. Beijing: Chemical Industry Press, 2013.
翁羽翔, 陈海龙. 超快激光光谱原理与技术基础[M]. 北京: 化学工业出版社, 2013.

【40】Cho M. Coherent multidimensional spectroscopy [M]. Singapore : Springer. 2019.

【41】Hamm P, Zanni M. Concepts and methods of 2D infrared spectroscopy[M]. Cambridge: , 2009.

【42】Engel G S, Calhoun T R, Read E L, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems [J]. Nature. 2007, 446(7137): 782-786.

【43】Collini E, Wong C Y, Wilk K E, et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature [J]. Nature. 2010, 463(7281): 644-647.

【44】Schlau-Cohen G S, Dawlaty J M, Fleming G R. Ultrafast multidimensional spectroscopy: principles and applications to photosynthetic systems [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2012, 18(1): 283-295.

【45】Chenu A, Scholes G D. Coherence in energy transfer and photosynthesis [J]. Annual Review of Physical Chemistry. 2015, 66(1): 69-96.

【46】Chergui M. Ultrafast photophysics of transition metal complexes [J]. Accounts of Chemical Research. 2015, 48(3): 801-808.

【47】Smallwood C L, Cundiff S T. Multidimensional coherent spectroscopy of semiconductors [J]. Laser & Photonics Reviews. 2018, 12(12): 1800171.

【48】Ghosh A, Hochstrasser R M. A peptide''s perspective of water dynamics [J]. Chemical Physics. 2011, 390(1): 1-13.

【49】Cannizzo A. Ultrafast UV spectroscopy: from a local to a global view of dynamical processes in macromolecules [J]. Physical Chemistry Chemical Physics. 2012, 14(32): 11205-11223.

【50】Th?mer M, de Marco L, Ramasesha K, et al. Ultrafast 2D IR spectroscopy of the excess proton in liquid water [J]. Science. 2015, 350(6256): 78-82.

【51】Demtr?der W. Laser spectroscopy [M]. New York: Springer. 2008, 2.

【52】Laubereau A, Kaiser W. Picosecond investigations of dynamic processes in polyatomic molecules in liquids [M]. ∥Moore C B. Chemical and biochemical applications of lasers. Amsterdam: Elsevier. 1977, 87-143.

【53】Beckerle J D, Casassa M P, Cavanagh R R, et al. Sub-picosecond time-resolved IR spectroscopy of the vibrational dynamics of Rh (CO)2 (acac) [J]. Chemical Physics. 1992, 160(3): 487-497.

【54】Dougherty T P, Heilweil E J. Dual-beam subpicosecond broadband infrared spectrometer [J]. Optics Letters. 1994, 19(2): 129.

【55】Voroshilov A, Otto C, Greve J. On the coherent vibrational phase in polarization sensitive resonance CARS spectroscopy of copper tetraphenylporphyrin [J]. Journal of Chemical Physics. 1997, 106(7): 2589-2598.

【56】Ujj L, Popp A, Atkinson G H. Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: quantitative third-order susceptibility analysis of the dark-adapted mixture [J]. Chemical Physics. 1994, 188(2/3): 221-234.

【57】Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy [J]. Science. 1990, 248(4951): 73-76.

【58】Kim J, Kim D E, Joo T. Excited-state dynamics of thioflavin T: planar stable intermediate revealed by nuclear wave packet spectroscopies [J]. The Journal of Physical Chemistry A. 2018, 122(5): 1283-1290.

【59】Müller M, Rinia H A, Bonn M, et al. Quantitative multiplex CARS spectroscopy in congested spectral regions [J]. Proceedings of SPIE. 2007, 6442: 644206.

【60】Camp C H, Lee Y J, Heddleston J M, et al. High-speed coherent Raman fingerprint imaging of biological tissues [J]. Nature Photonics. 2014, 8(8): 627-634.

【61】Marian A, Stowe M C, Lawall J, et al. United time-frequency spectroscopy for dynamics and global structure [J]. Science. 2004, 306(5704): 2063-2068.

【62】Barmes I, Witte S. Eikema K S E. High-precision spectroscopy with counterpropagating femtosecond pulses [J]. Physical Review Letters. 2013, 111(2): 023007.

【63】Marian A, Stowe M C, Felinto D, et al. Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics [J]. Physical Review Letters. 2005, 95(2): 023001.

【64】Ideguchi T, Bernhardt B, Guelachvili G, et al. Raman-induced Kerr-effect dual-comb spectroscopy [J]. Optics Letters. 2012, 37(21): 4498-4500.

【65】Fidler A F, Harel E, Engel G S. Dissecting hidden couplings using fifth-order three-dimensional electronic spectroscopy [J]. Journal of Physical Chemistry Letters. 2010, 1(19): 2876-2880.

【66】Ding F, Zanni M T. Heterodyned 3D IR spectroscopy [J]. Chemical Physics. 2007, 341(1/2/3): 95-105.

【67】Titze M, Li H B. Interpretation of optical three-dimensional coherent spectroscopy [J]. Physical Review A. 2017, 96(3): 032508.

【68】Cundiff S T. Optical three-dimensional coherent spectroscopy [J]. Physical Chemistry Chemical Physics. 2014, 16(18): 8193-8200.

【69】Schirhagl R, Chang K, Loretz M, et al. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology [J]. Annual Review of Physical Chemistry. 2014, 65(1): 83-105.

【70】Vaughan J C, Hornung T, Stone K W, et al. Coherently controlled ultrafast four-wave mixing spectroscopy [J]. Journal of Physical Chemistry A. 2007, 111(23): 4873-4883.

【71】Turner D B, Nelson K A. Coherent measurements of high-order electronic correlations in quantum Wells [J]. Nature. 2010, 466(7310): 1089-1092.Turner D B, Nelson K A. Coherent measurements of high-order electronic correlations in quantum Wells [J]. Nature. 2010, 466(7310): 1089-1092.

【72】Turner D B, Stone K W, Gundogdu K, et al. The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier [J]. Review of Scientific Instruments. 2011, 82(8): 081301.

【73】Brixner T. Man cˇal T, Stiopkin I V, et al. Phase-stabilized two-dimensional electronic spectroscopy [J]. The Journal of Chemical Physics. 2004, 121(9): 4221-4236.

【74】Harel E, Engel G S. Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy [J]. Proceedings of the National Academy of Sciences of the United States of America. 2010, 107(38): 16444-16447.

【75】Harel E, Fidler A F, Engel G S. Single-shot gradient-assisted photon echo electronic spectroscopy [J]. Journal of Physical Chemistry A. 2011, 115(16): 3787-3796.

【76】Wilson K S, Wong C Y. Single-shot transient absorption spectroscopy with a 45 ps pump-probe time delay range [J]. Optics Letters. 2018, 43(3): 371-374.Wilson K S, Wong C Y. Single-shot transient absorption spectroscopy with a 45 ps pump-probe time delay range [J]. Optics Letters. 2018, 43(3): 371-374.

【77】Sakaibara H, Ikegaya Y, Katayama I, et al. Single-shot time-frequency imaging spectroscopy using an echelon mirror [J]. Optics Letters. 2012, 37(6): 1118-1120.

【78】Shin T, Wolfson J W, Teitelbaum S W, et al. Dual echelon femtosecond single-shot spectroscopy [J]. Review of Scientific Instruments. 2014, 85(8): 083115.

【79】Minami Y, Yamaki H, Katayama I, et al. Broadband pump-probe imaging spectroscopy applicable to ultrafast single-shot events [J]. Applied Physics Express. 2014, 7(2): 022402.

【80】Elzinga P A, Lytle F E, Jian Y N, et al. Pump/probe spectroscopy by asynchronous optical sampling [J]. Applied Spectroscopy. 1987, 41(1): 2-4.

【81】Asahara A, Minoshima K. Development of ultrafast time-resolved dual-comb spectroscopy [J]. APL Photonics. 2017, 2(4): 041301.Asahara A, Minoshima K. Development of ultrafast time-resolved dual-comb spectroscopy [J]. APL Photonics. 2017, 2(4): 041301.

【82】Lomsadze B, Cundiff S T. Multi-heterodyne two dimensional coherent spectroscopy using frequency combs [J]. Scientific Reports. 2017, 7(1): 14018.

【83】Lomsadze B, Cundiff S T. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy [J]. Science. 2017, 357(6358): 1389-1391.

【84】Lomsadze B, Cundiff S T. Frequency comb-based four-wave-mixing spectroscopy [J]. Optics Letters. 2017, 42(12): 2346-2349.

【85】Lomsadze B, Cundiff S T. Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions [J]. Physical Review Letters. 2018, 120(23): 233401.

【86】Kim J, Jeon J, Yoon T H, et al. Dual frequency-comb spectroscopy of chromophores in condensed phases [J]. Chemical Physics. 2019, 520: 122-137.

【87】Jeon J, Kim J, Yoon T H, et al. Dual frequency comb photon echo spectroscopy [J]. Journal of the Optical Society of America B. 2019, 36(2): 223-234.

【88】Lomsadze B, Cundiff S T. Tri-comb multidimensional coherent spectroscopy [J]. IEEE Photonics Technology Letters. 2019, 31(23): 1886-1889.

【89】Lomsadze B, Smith B C, Cundiff S T. Tri-comb spectroscopy [J]. Nature Photonics. 2018, 12(11): 676-680.

【90】Bartels A, Cerna R, Kistner C, et al. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling [J]. Review of Scientific Instruments. 2007, 78(3): 035107.

【91】Yasui T, Kawamoto K, Hsieh Y-D, et al. Enhancement of spectral resolution and accuracy in asynchronous-optical-sampling terahertz time-domain spectroscopy for low-pressure gas-phase analysis [J]. Optics Express. 2012, 20(14): 15071.

【92】Khalil M, Demird?ven N, Tokmakoff A. Vibrational coherence transfer characterized with Fourier-transform 2D IR spectroscopy [J]. Journal of Chemical Physics. 2004, 121(1): 362-373.

【93】Kim J, Cho B, Yoon T H, et al. Dual-frequency comb transient absorption: broad dynamic range measurement of femtosecond to nanosecond relaxation processes [J]. The Journal of Physical Chemistry Letters. 2018, 9(8): 1866-1871.

【94】Adachi S, Takeyama S, Takagi Y. Dual wavelength optical sampling technique for ultrafast transient bleaching spectroscopy [J]. Optics Communications. 1995, 117(1/2): 71-77.

【95】Gebs R, Klatt G, Janke C, et al. High-speed asynchronous optical sampling with sub-50fs time resolution [J]. Optics Express. 2010, 18(6): 5974-5983.

【96】Pollard W T, Dexheimer S L, Wang Q, et al. Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin [J]. The Journal of Physical Chemistry. 1992, 96(15): 6147-6158.

【97】Do T N, Gelin M F, Tan H. Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra [J]. Journal of Chemical Physics. 2017, 147(14): 144103.

【98】Kim J, Yoon T H, Cho M. Interferometric measurement of transient absorption and refraction spectra with dual frequency comb [J]. Journal of Physical Chemistry B. 2018, 122(42): 9775-9785.

【99】Jeon J, Kim J, Yoon T H, et al. Theory of three-pulse photon echo spectroscopy with dual frequency combs [J]. Journal of the Optical Society of America B. 2019, 36(11): 3196-3208.

【100】Müller M, Zumbusch A. Coherent anti-Stokes Raman scattering microscopy [J]. ChemPhysChem. 2007, 8(15): 2156-2170.

【101】Evans C L, Xie X S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine [J]. Annual Review of Analytical Chemistry. 2008, 1(1): 883-909.

【102】Cheng J X, Xie X S. Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications [J]. The Journal of Physical Chemistry B. 2004, 108(3): 827-840.

【103】Pohling C, Buckup T, Motzkus M. Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples [J]. Journal of Biomedical Optics. 2011, 16(2): 021105.Pohling C, Buckup T, Motzkus M. Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples [J]. Journal of Biomedical Optics. 2011, 16(2): 021105.

【104】Vartiainen E M. Phase retrieval approach for coherent anti-Stokes Raman scattering spectrum analysis [J]. Journal of the Optical Society of America B. 1992, 9(8): 1209-1214.

【105】Vartiainen E M, Rinia H A, Müller M, et al. Direct extraction of Raman line-shapes from congested CARS spectra [J]. Optics Express. 2006, 14(8): 3622-3630.

【106】Kamga F M, Sceats M G. Pulse-sequenced coherent anti-Stokes Raman scattering spectroscopy: a method for suppression of the nonresonant background [J]. Optics Letters. 1980, 5(3): 126.

【107】Lee Y J, Cicerone M T. Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy [J]. Applied Physics Letters. 2008, 92(4): 041108.

【108】Selm R, Winterhalder M, Zumbusch A, et al. Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er: fiber laser system [J]. Optics Letters. 2010, 35(19): 3282-3284.Selm R, Winterhalder M, Zumbusch A, et al. Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er: fiber laser system [J]. Optics Letters. 2010, 35(19): 3282-3284.

【109】Cui M, Joffre M, Skodack J, et al. Interferometric Fourier transform coherent anti-stokes Raman scattering [J]. Optics Express. 2006, 14(18): 8448-8458.

【110】Ogilvie J P, Beaurepaire E, Alexandrou A, et al. Fourier-transform coherent anti-Stokes Raman scattering microscopy [J]. Optics Letters. 2006, 31(4): 480-482.

【111】Hellerer T, Enejder A, Zumbusch A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses [J]. Applied Physics Letters. 2004, 85(1): 25-27.

【112】Rocha-Mendoza I, Langbein W, Borri P. Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion [J]. Applied Physics Letters. 2008, 93(20): 201103.

【113】Langbein W, Rocha-Mendoza I, Borri P. Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing [J]. Applied Physics Letters. 2009, 95(8): 081109.

【114】Ideguchi T, Holzner S, Bernhardt B, et al. Coherent Raman spectro-imaging with laser frequency combs [J]. Nature. 2013, 502(7471): 355-359.Ideguchi T, Holzner S, Bernhardt B, et al. Coherent Raman spectro-imaging with laser frequency combs [J]. Nature. 2013, 502(7471): 355-359.

【115】Coluccelli N, Howle C R. McEwan K, et al. Fiber-format dual-comb coherent Raman spectrometer [J]. Optics Letters. 2017, 42(22): 4683.

【116】Yan M, Zhang L, Hao Q, et al. Surface-enhanced dual-comb coherent Raman spectroscopy with nanoporous gold films [J]. Laser & Photonics Reviews. 2018, 12(9): 1800096.

【117】Langbein W, Rocha-Mendoza I, Borri P. Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment [J]. Journal of Raman Spectroscopy. 2009, 40(7): 800-808.

【118】Chen K, Wu T, Chen T, et al. Spectral focusing dual-comb coherent anti-Stokes Raman spectroscopic imaging [J]. Optics Letters. 2017, 42(18): 3634-3637.Chen K, Wu T, Chen T, et al. Spectral focusing dual-comb coherent anti-Stokes Raman spectroscopic imaging [J]. Optics Letters. 2017, 42(18): 3634-3637.

【119】Mohler K J, Bohn B J, Yan M, et al. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency [J]. Optics Letters. 2017, 42(2): 318-321.

【120】Ideguchi T, Nakamura T, Takizawa S, et al. Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy [J]. Optics Letters. 2018, 43(16): 4057-4060.

【121】Wu T, Chen K, Wei H Y, et al. Repetition frequency modulated fiber laser for coherent anti-Stokes Raman scattering [J]. Optics Letters. 2020, 45(2): 407-410.

【122】Hipke A, Meek S A, Ideguchi T, et al. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs [J]. Physical Review A. 2014, 90(1): 011805.

【123】Hipke A. Dual-frequency-comb two-photon spectroscopy München: [D]. Ludwig-Maximilians University. 2016.

【124】Meek S A, Hipke A, Guelachvili G, et al. Doppler-free Fourier transform spectroscopy [J]. Optics Letters. 2018, 43(1): 162-165.

【125】Nishiyama A, Nakajima Y, Nakagawa K, et al. Precise and highly-sensitive Doppler-free two-photon absorption dual-comb spectroscopy using pulse shaping and coherent averaging for fluorescence signal detection [J]. Optics Express. 2018, 26(7): 8957-8967.

【126】Zhang S M, Wu J, Zhang Y M, et al. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms [J]. Scientific Reports. 2015, 5(1): 15114.

【127】Stalnaker J E. Ayer H M G, Baron J H, et al. Measurement of the 4S1/2→6S1/2 transition frequency in atomic potassium via direct frequency-comb spectroscopy [J]. Physical Review A. 2017, 96: 012504.

【128】West B A, Molesky B P, Giokas P G, et al. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV [J]. Chemical Physics. 2013, 423: 92-104.

【129】Fan F T, Li C. From molecular fragments to active sites: in situ, resonance UV Raman spectroscopy study on zeolitic catalyst [J]. Scientia Sinica: Chimica. 2013, 43(12): 1818-1830.
范峰滔, 李灿. 从分子碎片到活性位:分子筛催化材料的原位、共振紫外拉曼光谱研究 [J]. 中国科学:化学. 2013, 43(12): 1818-1830.

【130】Xu B B, Jin S Z, Jiang L, et al. A review of applications of resonance Raman spectroscopy [J]. Spectroscopy and Spectral Analysis. 2019, 39(7): 2119-2127.
徐冰冰, 金尚忠, 姜丽, 等. 共振拉曼光谱技术应用综述 [J]. 光谱学与光谱分析. 2019, 39(7): 2119-2127.

【131】Herrmann M, Haas M, Jentschura U D, et al. Feasibility of coherent xuv spectroscopy on the 1S-2S transition in singly ionized helium [J]. Physical Review A. 2009, 79(5): 052505.

【132】Witte S. Deep-ultraviolet quantum interference metrology with ultrashort laser pulses [J]. Science. 2005, 307(5708): 400-403.

引用该论文

Lu Minjian,Wu Tao,Li Yan,Wei Haoyun. Dual-Comb Nonlinear Spectroscopy[J]. Laser & Optoelectronics Progress, 2021, 58(1): 0100001

卢敏健,武韬,李岩,尉昊赟. 双光梳非线性光谱[J]. 激光与光电子学进展, 2021, 58(1): 0100001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF