首页 > 论文 > 中国激光 > 46卷 > 8期(pp:801003--1)

基于腔内级联变频的0.63 μm波段多波长激光器

Multi-Wavelength Laser at Waveband of 0.63 μm Based on Cascaded Intracavity Frequency Conversion

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计出一种基于级联非线性频率变换的634,644,655 nm多波长激光器。该复合变频过程由磷酸钛氧钾(KTP)和砷酸钛氧钾(KTA)晶体共同完成。首先由沿x轴切割的KTP晶体的光参量振荡将波长为1064 nm的激光变频为1572 nm,然后基于(θ=90°,φ=20.9°)切割KTA晶体完成1064 nm与1572 nm的和频过程,获得波长为634 nm的激光输出,进一步利用前述沿x轴切割KTP晶体的拉曼变频,将634 nm激光变频为644 nm的一阶拉曼光及655 nm的二阶拉曼光,实现634,644,655 nm多波长激光同时输出。该复合变频多波长激光器的最大平均输出功率为1.7 W,相应的脉冲宽度为19.3 ns,重复频率为6 kHz。

Abstract

In this study, we describe a multi-wavelength laser at wavelengths of 634, 644, and 655 nm based on cascaded nonlinear frequency conversion. The cascaded frequency conversion process is jointly performed using the KTiOPO4 (KTP) and KTiOAsO4 (KTA) crystals. First, optical parametric oscillation is conducted in an x-cut KTP crystal to convert the 1064-nm laser into a 1572-nm laser. Sum frequency generation is subsequently achieved in a (θ=90° and φ=20.9°)-cut KTA crystal for the sum frequency mixing of 1064 and 1572 nm, generating a 634-nm laser output. Raman frequency conversion is further utilized in the x-cut KTP crystal to convert the 634-nm laser into first-order Raman radiation at 644 nm and second-order Raman radiation at 655 nm, simultaneously achieving multi-wavelength emissions at 634, 644, and 655 nm. The cascaded frequency multi-wavelength laser has a maximum average output power of 1.7 W, a pulse width of 19.3 ns, and a repetition rate of 6 kHz.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0801003

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金;

收稿日期:2019-03-07

修改稿日期:2019-04-08

网络出版日期:2019-08-01

作者单位    点击查看

陈海伟:江苏师范大学物理与电子工程学院, 江苏 徐州 221116
黄海涛:江苏师范大学物理与电子工程学院, 江苏 徐州 221116江苏师范大学江苏省先进激光技术与新兴产业协同创新中心, 江苏 徐州 221116
王石强:江苏师范大学物理与电子工程学院, 江苏 徐州 221116
沈德元:江苏师范大学物理与电子工程学院, 江苏 徐州 221116江苏师范大学江苏省先进激光技术与新兴产业协同创新中心, 江苏 徐州 221116

联系人作者:黄海涛(hht840211@163.com)

备注:国家自然科学基金;

【1】Wang H J, Shrestha R and Zhang Y. Encapsulation of photosensitizers and upconversion nanocrystals in lipid micelles for photodynamic therapy. Particle & Particle Systems Characterization. 31(2), 228-235(2014).

【2】Wu Z C. Zhang X L. 670 nm single wavelength Nd∶YAG ceramic laser. Applied Mechanics, Materials. 321/322/323/324, 482-485(2013).

【3】Milanetto M C, Imasato H and Perussi J R. The importance of protoporphyrin IX efflux for ALA-PDT dosimetry. Laser Physics Letters. 6(8), 611-615(2009).

【4】Marcus S L, Sobel R S, Golub A L et al. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): current clinical and development status. Journal of Clinical Laser Medicine & Surgery. 14(2), 59-66(1996).

【5】Zhou B R, Zhang L C, Permatasari F et al. ALA-PDT elicits oxidative damage and apoptosis in UVB-induced premature senescence of human skin fibroblasts. Photodiagnosis and Photodynamic Therapy. 14, 47-56(2016).

【6】Semyachkina-Glushkovskaya O, Kurths J, Borisova E et al. Photodynamic opening of blood-brain barrier. Biomedical Optics Express. 8(11), 5040-5048(2017).

【7】Wang F J, Liu Z, Xu B et al. Blue laser diode pumped Pr 3+∶YLF visible lasers . Chinese Journal of Lasers. 40(12), (2013).
王凤娟, 刘哲, 徐斌 等. 蓝光激光二极管抽运Pr 3+∶YLF红绿可见光激光器 . 中国激光. 40(12), (2013).

【8】Gamaleia N F, Lisnyak I A, Shishko E D et al. Chronobiological approaches to antiangiogenic photodynamic therapy of tumors: the first experimental evaluation. Experimental Oncology. 34(4), 364-366(2012).

【9】Brahmachary K, Rajesh D, Babu S et al. Investigations on spectroscopic properties of Pr 3+ and Nd 3+ doped zinc-alumino-sodium-phosphate (ZANP) glasses . Journal of Molecular Structure. 1064, 6-14(2014).

【10】Zhu Z, Xiao C F, Xia W et al. Design and fabrication of high power 640 nm red laser diodes. Laser & Optoelectronics Progress. 55(8), (2018).
朱振, 肖成峰, 夏伟 等. 大功率640 nm红光半导体激光器的设计及制备. 激光与光电子学进展. 55(8), (2018).

【11】Jaque D, Capmany J and García Solé J. Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4∶Nd 3+ . Applied Physics Letters. 74(13), 1788-1790(1999).

【12】Sarrouf R, Sousa V, Badr T et al. Watt-level single-frequency tunable Nd∶YLF/periodically poled KTiOPO4 red laser. Optics Letters. 32(18), 2732-2734(2007).

【13】Chen X Y, Bai J T, Ren Z Y et al. Red, green and infrared three-wavelength lasers generated from LD side-pumped Nd 3+∶YAG crystal . Optik. 123(14), 1245-1248(2012).

【14】Cui J F, Wang D, Zhang Y N et al. LD side-pumped Nd∶YVO4 532 nm quasi-continuous green laser. Laser & Optoelectronics Progress. 54(4), (2017).
崔建丰, 王迪, 张亚男 等. LD侧面抽运Nd∶YVO4 532 nm准连续绿光激光器. 激光与光电子学进展. 54(4), (2017).

【15】Ta?l? H, Akb?y?k A, Topaloglu N et al. . Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant staphylococcus aureus. Journal of Microbiology. 56(11), 828-837(2018).

【16】López-Chicón P, Gulías O and Nonell S. et al. In vitro antimicrobial photodynamic therapy against trichophyton mentagrophytes using new methylene blue as the photosensitizer. Actas Dermo-Sifiliográficas (English Edition). 107(9), 765-770(2016).

【17】Duan Y M, Zhu H Y, Wang H Y et al. Comparison of 1.15 μm Nd∶YAG\KTA Raman lasers with 234 and 671 cm -1 shifts . Optics Express. 24(5), 5565-5571(2016).

【18】Huang H T, He J L, Liu S D et al. Efficient generation of 1096 nm and 1572 nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal. Applied Physics B. 103(1), 129-135(2011).

【19】Potma E O, de Boeij W P, Pshenichnikov M S et al. . 30-fs, cavity-dumped optical parametric oscillator. Optics Letters. 23(22), 1763-1765(1998).

引用该论文

Haiwei Chen, Haitao Huang, Shiqiang Wang, Deyuan Shen. Multi-Wavelength Laser at Waveband of 0.63 μm Based on Cascaded Intracavity Frequency Conversion[J]. Chinese Journal of Lasers, 2019, 46(8): 0801003

陈海伟, 黄海涛, 王石强, 沈德元. 基于腔内级联变频的0.63 μm波段多波长激光器[J]. 中国激光, 2019, 46(8): 0801003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF