首页 > 论文 > 光学学报 > 39卷 > 6期(pp:0611001--1)

高分辨大视场紫外-可见光偏振成像融合处理技术

Ultraviolet-Visible Polarimetric Imaging and Image Fusion Technology with High Resolution and Large Field-of-View

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用蒙特卡罗方法对水云下大气的偏振态分布进行了仿真分析,所建立的水云大气环境在紫外360~400 nm波段的偏振度响应最大。采用紫外-可见光偏振成像技术对同一视场下的楼房、云和天空进行了偏振成像实验,并用霍夫变换分割方法对图像中的每个区域进行了统计分析,发现观测区域内无云区与云区的偏振角均值相对差为1.6%,偏振度均值相对差为-14%,证明了大气偏振角较偏振度稳健。紫外光和可见光在对云目标的偏振观测中存在互补性,采用拉普拉斯金字塔图像融合技术能够提高对大气目标的探测能力,验证了大视场高分辨紫外-可见光偏振成像技术在大气探测中的可行性和有效性。

Abstract

The Monte Carlo method is used to simulate the atmospheric polarimetric distribution under water clouds. The results show that the polarimetric response of water clouds in the ultraviolet (UV) band of 360-400 nm is the largest as compared to that of other spectra. Polarization pictures of buildings, clouds, and the sky in the same field of view are taken using UV-visible polarimetric imaging technology. Hough transform is used to divide these pictures, and statistical analysis is applied to each segment. The statistical results show that the relative differences of the polarization degree and polarization angle of the cloud-free and cloudy areas are -14% and 1.6%, respectively, providing the robustness of polarization angle in atmospheric detection. The UV and visible are found to be complementary in polarimetric detection for the clouds. Thus, image fusion technology in conjunction with a Laplacian pyramid can improve the detection capability for atmospheric targets. Results verify that the UV-visible polarimetric imaging technology with large field-of-view and high resolution is feasible and effective for atmospheric detection.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/AOS201939.0611001

所属栏目:成像系统

基金项目:国家自然科学基金;

收稿日期:2018-12-29

修改稿日期:2019-02-19

网络出版日期:2019-06-17

作者单位    点击查看

李清灵:中国科学院大学, 北京 100049中国科学院上海技术物理研究所, 上海 200083中国科学院红外探测与成像技术重点实验室, 上海 200083
尹达一:中国科学院大学, 北京 100049中国科学院上海技术物理研究所, 上海 200083中国科学院红外探测与成像技术重点实验室, 上海 200083
庾金涛:中国科学院大学, 北京 100049中国科学院上海技术物理研究所, 上海 200083中国科学院红外探测与成像技术重点实验室, 上海 200083
李磊:中国科学院大学, 北京 100049中国科学院上海技术物理研究所, 上海 200083中国科学院红外探测与成像技术重点实验室, 上海 200083

联系人作者:尹达一(yindayi@mail.sitp.ac.cn)

备注:国家自然科学基金;

【1】Gu X F, Cheng T H, Li Z Q et al. Atmospheric aerosol polarized remote sensing. 1-2(2015).
顾行发, 程天海, 李正强 等. 大气气溶胶偏振遥感. 1-2(2015).

【2】Gao J and Fan Z G. Bionic polarized light navigation method. 107-108(2014).
高隽, 范之国. 仿生偏振光导航方法. 107-108(2014).

【3】Horváth G and Varjú D. Polarized light in animal vision. Berlin, Heidelberg: Springer. 53-73(2004).

【4】Wang X, Gao J and Fan Z G. Empirical corroboration of an earlier theoretical resolution to the UV paradox of insect polarized skylight orientation. Naturwissenschaften. 101(2), 95-103(2014).

【5】Barta A and Horváth G. Why is it advantageous for animals to detect celestial polarization in the ultraviolet Skylight polarization under clouds and canopies is strongest in the UV. Journal of Theoretical Biology. 226(4), 429-437(2004).

【6】Hegedüs R, Barta A, Bernáth B et al. Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage. Applied Optics. 46(23), 6019-6032(2007).

【7】Bréon F M, Buriez J C, Couvert P et al. Scientific results from the Polarization and Directionality of the Earth''s Reflectances (POLDER). Advances in Space Research. 30(11), 2383-2386(2002).

【8】Parol F, Buriez J C, Vanbauce C et al. Review of capabilities of multi-angle and polarization cloud measurements from POLDER. Advances in Space Research. 33(7), 1080-1088(2004).

【9】Okamura Y and Tanaka K. Optical multi-band radiometer onboard earth observing satellite. Japanese Journal of Optics. 39(12), 572-577(2010).
岡村吉彦, 田中一広. 衛星搭載用多波長光学放射計. 光学. 39(12), 572-577(2010).

【10】Zhang M M, Meng B H, Luo D G et al. Measurement precision verification and deviation analysis of spaceborne directional polarimetric camera. Acta Optica Sinica. 38(8), (2018).
张苗苗, 孟炳寰, 骆冬根 等. 星载多角度偏振成像仪测量精度验证与偏差分析. 光学学报. 38(8), (2018).

【11】Yang W F, Hong J and Qiao Y L. Optical design of spaceborne directional polarization camera. Acta Optica Sinica. 35(8), (2015).
杨伟锋, 洪津, 乔延利. 星载多角度偏振成像仪光学系统设计. 光学学报. 35(8), (2015).

【12】Carey N and Stürzl W. An insect-inspired omnidirectional vision system including UV-sensitivity and polarisation. [C]//2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), November 6-13, 2011, Barcelona, Spain. New York: IEEE. 312-319(2011).

【13】Zhang W J, Cao Y, Zhang X Z et al. Sky light polarization detection with linear polarizer triplet in light field camera inspired by insect vision. Applied Optics. 54(30), 8962-8970(2015).

【14】Qian H H, Ye Q H, Meng B H et al. The polarized radiometric theoretical error of spaceborne directional polarimetric camera. Spectroscopy and Spectral Analysis. 37(5), 1558-1565(2017).
钱鸿鹄, 叶擎昊, 孟炳寰 等. 星载多角度偏振成像仪偏振辐射测量的理论误差分析. 光谱学与光谱分析. 37(5), 1558-1565(2017).

【15】Li J S, Yang W, Zhang X M et al. Infrared image processing, analysis and fusion. 158-164(2009).
李俊山, 杨威, 张雄美. 红外图像处理、分析与融合. 158-164(2009).

引用该论文

Qingling Li,Dayi Yin,Jintao Yu,Lei Li. Ultraviolet-Visible Polarimetric Imaging and Image Fusion Technology with High Resolution and Large Field-of-View[J]. Acta Optica Sinica, 2019, 39(6): 0611001

李清灵,尹达一,庾金涛,李磊. 高分辨大视场紫外-可见光偏振成像融合处理技术[J]. 光学学报, 2019, 39(6): 0611001

被引情况

【1】于津强,段锦,陈伟民,莫苏新,李英超,陈宇. 基于NSST与自适应SPCNN的水下偏振图像融合. 激光与光电子学进展, 2020, 57(6): 61006--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF