首页 > 论文 > 中国激光 > 46卷 > 9期(pp:902001--1)

飞秒激光加工水凝胶双面神微柱及其应用

Processing and Application of Hydrogel Janus Micropillars Based on Femtosecond Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用双面神结构实现形状转换是一种非常重要的方法。提出了一种通过控制飞秒激光扫描次数在pH敏感的水凝胶中制备形状可调的双面神微柱的方法,并探讨了该方法在信息加密、解密及显示方面的应用。结果表明:通过改变环境的pH值可使微柱表现出可逆的结构变形;激光打印技术的高灵活性使得微柱的空间布局、高度以及弯曲方向都能被灵活地控制,从而实现多种形状可转换的有序图案。

Abstract

Using Janus structures to realize shape transformation is an important method. Here, we present an approach which prepares geometry-switchable Janus micropillars by controlling scanning times of femtosecond laser on a pH-sensitive hydrogel. The applications of the proposed method in encryption, decryption, and display of information are explored. Results show that these micropillars exhibit reversible structural deformation when the pH of the aqueous environment is changed. Because the laser printing technique is highly flexible, the spatial arrangements, pillar heights, and bending directions of micropillars can be readily controlled. Thus, patterns with variable spatial arrangement can be realized.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0902001

所属栏目:激光制造

基金项目:国家自然科学基金、安徽省自然科学基金、中央高校基本科研业务费专项资金、国家青年千人计划;

收稿日期:2019-03-28

修改稿日期:2019-04-19

网络出版日期:2019-09-01

作者单位    点击查看

孙锐:中国科学技术大学工程科学学院, 安徽 合肥 230026
王重宇:中国科学技术大学工程科学学院, 安徽 合肥 230026
胡衍雷:中国科学技术大学工程科学学院, 安徽 合肥 230026
辛晨:中国科学技术大学工程科学学院, 安徽 合肥 230026
吴东:中国科学技术大学工程科学学院, 安徽 合肥 230026

联系人作者:胡衍雷(hyl@ustc.edu.cn); 吴东( hyl@ustc.edu.cn);

备注:国家自然科学基金、安徽省自然科学基金、中央高校基本科研业务费专项资金、国家青年千人计划;

【1】Dawson C. Vincent J F V, Rocca A M. How pine cones open. Nature. 390(6661), (1997).

【2】Allen J J. Bell G R R, Kuzirian A M, et al. Cuttlefish skin papilla morphology suggests a muscular hydrostatic function for rapid changeability. Journal of Morphology. 274(6), 645-656(2013).

【3】Forterre Y, Skotheim J M, Dumais J et al. How the Venus flytrap snaps. Nature. 433(7024), 421-425(2005).

【4】Elbaum R, Zaltzman L, Burgert I et al. The role of wheat awns in the seed dispersal unit. Science. 316(5826), 884-886(2007).

【5】Vandenbrink J P, Brown E A, Harmer S L et al. Turning heads: the biology of solar tracking in sunflower. Plant Science. 224, 20-26(2014).

【6】Zhang Y C, Li Y, Hu Y L et al. Localized self-growth of reconfigurable architectures induced by a femtosecond laser on a shape-memory polymer. Advanced Materials. 30(49), (2018).

【7】Xu S Y, Belopolski I, Sanchez D S et al. Experimental discovery of a topological Weyl semimetal state in TaP. Science Advances. 1(10), (2015).

【8】Felton S, Tolley M, Demaine E et al. A method for building self-folding machines. Science. 345(6197), 644-646(2014).

【9】Stoychev G, Puretskiy N and Ionov L. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter. 7(7), 3277-3279(2011).

【10】Bassik N, Abebe B T, Laflin K E et al. Photolithographically patterned smart hydrogel based bilayer actuators. Polymer. 51(26), 6093-6098(2010).

【11】Liu Y, Boyles J K, Genzer J et al. Self-folding of polymer sheets using local light absorption. Soft Matter. 8(6), 1764-1769(2012).

【12】Leong T G, Lester P A, Koh T L et al. Surface tension-driven self-folding polyhedra. Langmuir. 23(17), 8747-8751(2007).

【13】Na J H, Evans A A, Bae J et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Advanced Materials. 27(1), 79-85(2015).

【14】Duan H G and Berggren K K. Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion. Nano Letters. 10(9), 3710-3716(2010).

【15】Lao Z X, Hu Y L, Zhang C C et al. Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles. ACS Nano. 9(12), 12060-12069(2015).

【16】Lao Z X, Pan D, Yuan H W et al. Mechanical-tunable capillary-force-driven self-assembled hierarchical structures on soft substrate. ACS Nano. 12(10), 10142-10150(2018).

【17】Hu Y L, Lao Z X, Cumming B P et al. Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly. Proceedings of the National Academy of Sciences. 112(22), 6876-6881(2015).

【18】Lao Z X, Hu Y L, Pan D et al. Self-sealed bionic long microchannels with thin walls and designable nanoholes prepared by line-contact capillary-force assembly. Small. 13(23), (2017).

【19】Loget G, Roche J and Kuhn A. True bulk synthesis of Janus objects by bipolar electrochemistry. Advanced Materials. 24(37), 5111-5116(2012).

【20】Hu S H and Gao X H. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. Journal of the American Chemical Society. 132(21), 7234-7237(2010).

【21】Yan S G, Ren F F, Li C Z et al. Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment. Applied Physics Letters. 113(26), (2018).

【22】Zhang Z, Zhang Y H, Fan H et al. A Janus oil barrel with tapered microhole arrays for spontaneous high-flux spilled oil absorption and storage. Nanoscale. 9(41), 15796-15803(2017).

【23】Martella D, Nocentini S, Nuzhdin D et al. Photonic microhand with autonomous action. Advanced Materials. 29(42), (2017).

【24】Han H, Baik S, Xu B R et al. Bioinspired geometry-switchable Janus nanofibers for eye-readable H2 sensors. Advanced Functional Materials. 27(29), (2017).

【25】Han D D, Zhang Y L, Liu Y et al. Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers. Advanced Functional Materials. 25(28), 4548-4557(2015).

【26】Zhang X B, Yu Z B, Wang C et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nature Communications. 5, (2014).

【27】Kim T I, Jeong H E, Suh K Y et al. Stooped nanohairs: geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Advanced Materials. 21(22), 2276-2281(2009).

【28】Ma H, Hou J W, Wang X W et al. Flexible, all-inorganic actuators based on vanadium dioxide and carbon nanotube bimorphs. Nano Letters. 17(1), 421-428(2017).

【29】Hu W J, Xu B, Shi Y et al. Flow sensor with high sensitivity fabricated by femtosecond laser. Chinese Journal of Lasers. 45(9), (2018).
胡文锦, 许兵, 史杨 等. 飞秒激光制备高敏感度流量传感器. 中国激光. 45(9), (2018).

【30】Cao X W, Zhang L, Yu Y S et al. Application of micro-optical components fabricated with femtosecond laser. Chinese Journal of Lasers. 44(1), (2017).
曹小文, 张雷, 于永森 等. 飞秒激光制备微光学元件及其应用. 中国激光. 44(1), (2017).

【31】Gupta P, Vermani K and Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today. 7(10), 569-579(2002).

引用该论文

Rui Sun,Zhongyu Wang,Yanlei Hu,Chen Xin,dong Wu. Processing and Application of Hydrogel Janus Micropillars Based on Femtosecond Laser[J]. Chinese Journal of Lasers, 2019, 46(9): 0902001

孙锐,王重宇,胡衍雷,辛晨,吴东. 飞秒激光加工水凝胶双面神微柱及其应用[J]. 中国激光, 2019, 46(9): 0902001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF