首页 > 论文 > 光子学报 > 48卷 > 12期(pp:1206001-1206001)

氧化石墨烯集成腐蚀型81°倾斜光栅生物传感器

Biosensor Based on Cladding-etched 81° Tilted Fiber Grating Coated with Graphene Oxide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了改善普通81°倾斜光纤光栅在生化检测中灵敏度低、检测极限不理想等问题,提出一种基于氧化石墨烯修饰腐蚀型81°倾斜光纤光栅的牛血清蛋白生物传感器,分析了该传感器的原理与传感特性.使用氢氟酸溶液腐蚀减小光栅直径,提高其对折射率的灵敏度,并用氧化石墨烯修饰光栅,然后将牛血清蛋白单克隆抗体固定于光栅表面,用于对牛血清蛋白的特异性检测.实验结果表明,氧化石墨烯集成腐蚀型81°倾斜光纤光栅生物传感器对牛血清蛋白的检测范围为0.15~15 nmol/L,检测极限为~0.165 nmol/L,其线性响应区域的灵敏度为~182 pm/(nmol·L-1),传感器的检测范围较氧化石墨烯集成标准直径81°倾斜光纤光栅有所降低,但其灵敏度提高了5.3倍,且检测极限有较大的改善.

Abstract

In order to improve the sensitivity and limit of detection of 81° tilted fiber grating, bovine serum albumin immunosensor based on graphene oxide modified cladding-etched 81° tilted fiber grating was proposed, the principle and sensing properties of the sensor were analyzed. Refractive index sensitivity of 81° tilted fiber grating was improved by etching with hydrofluoric acid. Then the etched 81° tilted fiber grating was coated with graphene oxide, and bovine serum albumin monoclonal antibody were modified on the surface of 81° tilted fiber grating for the specific detection of bovine serum albumin. Experimental results show that the detection range of the immunosensor is 0.15~15 nmol/L, limit of detection ~0.165 nmol/L, and the sensitivity in its linear response region is ~182 pm/(nmol·L-1). Although the detection range decrease, the sensitivity is ~5.3 times of that of the un-etched graphene oxide coated 81° tilted fiber grating, and the limit of detection is also improved.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN253

DOI:10.3788/gzxb20194812.1206001

所属栏目:光纤光学与光通信

基金项目:|National Natural Science Foundation of China (Nos.61875026, 61505017), the Foundation and Cutting-edge Research Projects of Chongqing Science and Technology Commission (Nos. cstc2018jcyjAX0122, cstc2019jcyj-msxmX0093), Science and Technology Project of Chongqing Education Commission (No.KJQN201801121), Graduate Student Innovation Program of Chongqing University of Technology (No.ycx2018231)

收稿日期:2019-06-10

修改稿日期:2019-07-23

网络出版日期:2020-03-17

作者单位    点击查看

王亚杰:重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054
罗彬彬:重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054
石胜辉:重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054
蒋上海:重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054
吴德操:重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054
吴胜昔:重庆理工大学 药物化学与分子药理学重庆市重点实验室, 重庆 400054重庆理工大学 药物化学与分子药理学重庆市重点实验室, 重庆 400054
鲁友铭:重庆理工大学 药物化学与分子药理学重庆市重点实验室, 重庆 400054重庆理工大学 药物化学与分子药理学重庆市重点实验室, 重庆 400054
巫涛江:重庆能源职业学院, 重庆 402247重庆能源职业学院, 重庆 402247
赵明富:重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054

联系人作者:罗彬彬(luobinbin@cqut.edu.cn)

备注:|National Natural Science Foundation of China (Nos.61875026, 61505017), the Foundation and Cutting-edge Research Projects of Chongqing Science and Technology Commission (Nos. cstc2018jcyjAX0122, cstc2019jcyj-msxmX0093), Science and Technology Project of Chongqing Education Commission (No.KJQN201801121), Graduate Student Innovation Program of Chongqing University of Technology (No.ycx2018231)

【1】F CHIAVAIOLI, F BALDINI and S TOMBELLI. Biosensing with optical fiber gratings. Nanophotonics. 6(4), 663-679(2017).F CHIAVAIOLI, F BALDINI and S TOMBELLI. Biosensing with optical fiber gratings. Nanophotonics. 6(4), 663-679(2017).

【2】C GONG, Y GONG and O M K KHAING. Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme. Biosensors and Bioelectron. 96(96), 351-357(2017).C GONG, Y GONG and O M K KHAING. Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme. Biosensors and Bioelectron. 96(96), 351-357(2017).

【3】J WO, G WANG and Y CUI. Refractive index sensor using microfiber based Mach-Zehnder interferometer. Optics Letters. 37(1), 67-69(2012).

【4】Bin-bin LUO, Zhi-jun YAN and Zhong-yuan SUN. Novel glucose sensor based on enzyme immobilized 81° tilted fiber grating. Optics Express. 22(25), 30571-30578(2014).

【5】Zhi-jun YAN, Zhong-yuan SUN and Kai-ming ZHOU. Numerical and experimental analysis of sensitivity-enhanced RI sensor based on ExTFG in thin cladding Fiber. Journal of Lightwave Technology. 33(14), 3023-3027(2015).

【6】Lu WANG, Q XIONG and Fei XIAO. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosensors and Bioelectronics. 89(Pt 1), 136-151(2017).Lu WANG, Q XIONG and Fei XIAO. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosensors and Bioelectronics. 89(Pt 1), 136-151(2017).

【7】Jia ZHANG, Ying SUN and Qiong WU. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Colloids and Surfaces B:Biointerfaces. 211(116), 211-218(2014).Jia ZHANG, Ying SUN and Qiong WU. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Colloids and Surfaces B:Biointerfaces. 211(116), 211-218(2014).

【8】Qiong WU, Ying SUN and Pin-yin MA. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide. Analytica Chimica Acta. 913(913), 137-144(2016).Qiong WU, Ying SUN and Pin-yin MA. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide. Analytica Chimica Acta. 913(913), 137-144(2016).

【9】Yong-ming LEI, Meng-meng XIAO and Yun-tao LI. Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosensors and Bioelectronics. 91(91), 1-7(2017).Yong-ming LEI, Meng-meng XIAO and Yun-tao LI. Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosensors and Bioelectronics. 91(91), 1-7(2017).

【10】Zhou CHENGZhou CHENG. Localized surface plasmonic resonance study of silver nanocubes for photonic crystal fiber sensor. Optics and Lasers in Engineering. 50(11), 1592-1595(2012).

【11】J C MEYER, R S SUNDARAM and A CHUILIN. Atomic structure of reduced graphene oxide. Nano Letters. 10(4), 1144-1148(2010).

【12】Bin-bin LUO, Hua-feng LU and Sheng-hui SHI. Immunosensing platform with large detection range using excessively tilted fiber grating coated with graphene oxide. Applied Optics. 57(30), 8805-8810(2018).

【13】Kai-ming ZHOU, Lin ZHANG and Xian-feng CHEN. Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80° tilted structures. Optics Letters. 31(9), 1193-1195(2006).

【14】Zhi-jun YAN, Hu-shan WANG and Chang-le WANG. Theoretical and experimental analysis of excessively tilted fiber gratings. Optics Express. 24(11), 12107-12116(2016).

【15】B R LI, C W CHEN and WL YANG. Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosensors and Bioelectronics. 45(45), 252-259(2013).B R LI, C W CHEN and WL YANG. Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosensors and Bioelectronics. 45(45), 252-259(2013).

引用该论文

Ya-jie WANG,Bin-bin LUO,Sheng-hui SHI,Shang-hai JIANG,De-cao WU,Sheng-xi WU,You-ming LU,Tao-jiang WU,Ming-fu ZHAO. Biosensor Based on Cladding-etched 81° Tilted Fiber Grating Coated with Graphene Oxide[J]. ACTA PHOTONICA SINICA, 2019, 48(12): 1206001-1206001

王亚杰,罗彬彬,石胜辉,蒋上海,吴德操,吴胜昔,鲁友铭,巫涛江,赵明富. 氧化石墨烯集成腐蚀型81°倾斜光栅生物传感器[J]. 光子学报, 2019, 48(12): 1206001-1206001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF