激光与光电子学进展, 2021, 58 (1): 0114009, 网络出版: 2021-01-28   

万瓦级光纤连接器参数设计及热效应数值模拟 下载: 809次

Parameter Design and Thermal Effect Numerical Simulation of 10 kW Fiber Connector
作者单位
北京工业大学激光工程研究院,北京 100124
摘要
针对万瓦级扩束型光纤连接器的准直聚焦透镜在不同冷却方式和不同尺寸参数的情况,进行了数值模拟。通过使用ZEMAX仿真设计,得到耦合透镜尺寸参数(直径为40~60 mm,边缘厚度为5~25 mm)。利用COMSOL Multiphysics模拟透镜的热分布,获得不同输出功率下,透镜使用该冷却方式的表面最高温度和使用该冷却方式透镜尺寸对温度的影响。对20组不同尺寸参数却有着相同光学性能的非球面透镜进行模拟分析,结果表明,在满足光学性能和功率密度的条件下,功率大于20 kW时,透镜可以使用侧面风冷的冷却方式,风速为9 m/s,透镜直径大于50 mm,厚度小于等于5 mm;功率大于7 kW时,透镜可以使用平面风冷的方式,风速为5 m/s,透镜直径大于30 mm,厚度小于等于5 mm;功率小于7 kW时,透镜可以使用边缘水冷的方式,水流速为1 m/s,透镜厚度小于7 mm。
Abstract
Numerical simulation is carried out for the collimating and focusing lens of the 10 kW expanded beam fiber connector under different cooling modes and different parameters. The coupling lens size parameters (diameter of 40 mm to 60 mm and edge thickness of 5 mm to 25 mm) are obtained by using the ZEMAX simulation design. The thermal distribution of the lens is simulated by COMSOL Multiphysics to obtain the maximum surface temperature of the lens using the cooling method and the influence of lens size on temperature under different output powers using this cooling method. The simulation analysis of 20 sets of aspherical lenses with different size parameters but the same optical performance shows that when the power is above 20 kW, the lens can be cooled by side air cooling mode, the wind speed is 9 m/s, the lens diameter is greater than 50 mm, and the thickness is less than or equal to 5 mm. When the power is greater than 7 kW, the lens can be cooled by plane air cooling, the wind speed is 5 m/s, the lens diameter is greater than 30 mm, and the thickness is less than or equal to 5 mm. When the power is lower than 7 kW, the lens can be cooled by edge water cooling, the water flow rate is 1 m/s, and the lens thickness is less than 7 mm.

章曦, 李平雪, 董雪岩, 杨卫鑫. 万瓦级光纤连接器参数设计及热效应数值模拟[J]. 激光与光电子学进展, 2021, 58(1): 0114009. Zhang Xi, Li Pingxue, Dong Xueyan, Yang Weixin. Parameter Design and Thermal Effect Numerical Simulation of 10 kW Fiber Connector[J]. Laser & Optoelectronics Progress, 2021, 58(1): 0114009.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!