首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1802001--1)

基于型材网格平台的紧凑 85Rb喷泉钟光路设计

Design of Compact 85Rb Fountain Optical Path Based on Profile Gridded Platform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


原子喷泉钟是具有重要应用价值的冷原子装置,紧凑型光学系统设计是研制可搬运冷原子喷泉钟的关键技术之一。介绍了一种以通用铝型材搭建的网格化光学平台,并基于此平台实现了 85Rb喷泉钟紧凑型光路。通过仿真,证明了该型材网格平台在二维方向均具有较好的力学性能。在该平台上,设计并搭建了四倍频移、注入锁定放大、冷却光路、再泵浦光路和探测光路等单元模块,满足了喷泉钟的所有要求。该网格平台面积为50 cm×50 cm,高度为2.5~3 cm。该光路实现了8个月以上的持续运行,功率的起伏小于5%。基于该紧凑型光学系统,完成了后续的 85Rb喷泉钟的物理实验和微波实验。


The atomic fountain clock is one cold atom applied apparatus possessing important applications. Compact laser system design is one of the key techniques for a portable cold atomic fountain clock. This paper introduces a gridded optical platform built with the general aluminum profiles, and based on it, we construct a compact optical path for the 85Rb fountain clock. Through simulation, it is proved that the profile gridded platform has better mechanical properties in two-dimensional direction. On this platform, we design and build the modules of such as four-pass frequency shift, injection locked amplifier, cooling optical path, repumping and probing paths to satisfy all requirements of an atomic fountain clock. The platform covers an area of 50 cm×50 cm and has a height of 2.5-3 cm. The optical path has been running continuously for more than 8 months with a power fluctuation less than 5%. Based on the compact optical system, we have completed the subsequent physical and microwave experiments of 85Rb fountain clocks.

广告组1 - 空间光调制器+DMD








作者单位    点击查看

姬清晨:上海大学理学院, 上海 200444中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
董日昌:中国科学院微小卫星创新研究院导航卫星研究所, 上海 201203
王倩:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
张宁:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
赵伟靖:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
王燕:上海大学理学院, 上海 200444
魏荣:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800

联系人作者:王燕(yanwang@staff.shu.edu.cn); 魏荣(weirong@siom.ac.cn);


【1】Wang Q, Wei R, Wang Y Z. Atomic fountain frequency standard: principle and development [J]. Acta Physica Sinica. 2018, 67(16): 163202.
王倩, 魏荣, 王育竹. 原子喷泉频标: 原理与发展 [J]. 物理学报. 2018, 67(16): 163202.

【2】Cohen Y, Jadeja K, Sula S, et al. A cold atom radio-frequency magnetometer [J]. Applied Physics Letters. 2019, 114(7): 073505.

【3】Wu B, Wang X L, Wang H L, et al. The current situation and tread of the gravimeter based on cold atom interferometer [J]. Navigation and Control. 2015, 14(2): 1-9.
吴彬, 王肖隆, 王河林, 等. 冷原子干涉型重力仪的发展现状与趋势 [J]. 导航与控制. 2015, 14(2): 1-9.

【4】Huang P W, Tang B, Chen X, et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters [J]. Metrologia. 2019, 56(4): 045012.

【5】Becker D, Lachmann M D, Seidel S, et al. Space-borne Bose-Einstein condensation for precision interferometry [J]. Nature. 2018, 562(7727): 391-395.

【6】Lewoczko-Adamczyk W, Schiemangk M, Peters A, et al. QUANTUS——degenerate quantum gases in microgravity . [C]∥2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, June 17-22,2007, Munich, Germany. New York: IEEE. 2007, 1.

【7】Schkolnik V, Hellmig O, Wenzlawski A, et al. A compact and robust diode laser system for atom interferometry on a sounding rocket [J]. Applied Physics B. 2016, 122(8): 217.

【8】Grosse J, Seidel S T, Becker D, et al. Design and qualification of an UHV system for operation on sounding rockets [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2016, 34(3): 031606.

【9】Wang X W, Gao Y C, Zhao J B, et al. Design of microwave cavity for in situ atom detection used in space cold atom clock [J]. Chinese Journal of Lasers. 2019, 46(9): 0901006.
王新文, 高源慈, 赵剑波, 等. 空间冷原子钟原位探测微波腔设计 [J]. 中国激光. 2019, 46(9): 0901006.

【10】-08-01)[2020-03-21] . https:∥digitalcommons.calpoly.edu/star/248. 2014.

【11】Bize S. The unit of time: present and future directions [J]. Comptes Rendus Physique. 2019, 20(1/2): 153-168.

【12】Dong R C. Construction and performance evaluation of the rubidium atomic fountain clock group Shanghai: Shanghai Institute of Optics and Fine Mechanics, [D]. Chinese Academy of Sciences. 2017, 25-47.
董日昌. 铷喷泉钟组的系统搭建与性能评估 [D]. 上海: 中国科学院上海光学精密机械研究所. 2017, 25-47.

【13】Cornish S L, Claussen N R, Roberts J L, et al. Stable 85Rb Bose-Einstein condensates with widely tunable interactions [J]. Physical Review Letters. 2000, 85(9): 1795.

【14】Wang J, Zhou L, Li R B, et al. Cold atom interferometers and their applications in precision measurements [J]. Frontiers of Physics in China. 2009, 4(2): 179-189.

【15】Ovchinnikov Y B, Marra G. Accurate rubidium atomic fountain frequency standard [J]. Metrologia. 2011, 48(3): 87-100.

【16】Zhang N, Wang Q, Zhao W J, et al. Design of low phase noise microwave frequency synthesizer for 85Rb fountain clock [J]. Acta Optica Sinica. 2020, 40(10): 1002001.
张宁, 王倩, 赵伟靖, 等. 85Rb喷泉钟的低相噪微波频率综合器设计 [J]. 光学学报. 2020, 40(10): 1002001.

【17】Wang Q, Zhang N, Guang W, et al. Precision measurements of the ground-state hyperfine splitting of 85Rb using an atomic fountain clock [J]. Physical Review A. 2019, 100(2): 022510.

【18】Arimondo E, Inguscio M, Violino P. Experimental determinations of the hyperfine structure in the alkali atoms [J]. Reviews of Modern Physics. 1977, 49(1): 31-75.

【19】Berengut J C, Flambaum V V, Kava E M. Search for variation of fundamental constants and violations of fundamental symmetries using isotope comparisons [J]. Physical Review A. 2011, 84(4): 042510.

【20】Laurent P, Massonnet D, Cacciapuoti L, et al. The ACES/PHARAO space mission [J]. Comptes Rendus Physique. 2015, 16(5): 540-552.

【21】Qu Q Z, Xia W B, Wang B, et al. Integrating design of a compact optical system for space laser cooling application [J]. Acta Optica Sinica. 2015, 35(6): 0602003.
屈求智, 夏文兵, 汪斌, 等. 空间激光冷却原子集成光学平台设计 [J]. 光学学报. 2015, 35(6): 0602003.

【22】Wang Y Q. Laser cooling and trapping of atoms[M]. Beijing: Peking University Press, 2007, 171-364.
王义遒. 原子的激光冷却与陷俘[M]. 北京: 北京大学出版社, 2007, 171-364.

【23】Zhou Z C, Wei R, Shi C Y, et al. -02-24 . 2010.
周子超, 魏荣, 史春艳, 等. -02-24 [P]. . 折叠式双光束磁光阱系统: CN101657062A. 2010.

【24】Zou F, Wei R, Du Y B, et al. -04-29 [P]. expandable aluminum profile optical platform: CN104570258A. 2015.
邹凡, 魏荣, 杜远博, 等. -04-29 [P]. . 轻便型可扩展铝型材光学平台: CN104570258A. 2015.

【25】Shi C Y. Operation and performance evaluation of rubidium 87 atomic fountain clock Shanghai: Shanghai Institute of Optics and Fine Mechanics, [D]. Chinese Academy of Sciences. 2012, 64.
史春艳. 铷87原子喷泉钟的运行与性能评估 [D]. 上海: 中国科学院上海光学精密机械研究所. 2012, 64.


Ji Qingchen,Dong Richang,Wang Qian,Zhang Ning,Zhao Weijing,Wang Yan,Wei Rong. Design of Compact 85Rb Fountain Optical Path Based on Profile Gridded Platform[J]. Acta Optica Sinica, 2020, 40(18): 1802001

姬清晨,董日昌,王倩,张宁,赵伟靖,王燕,魏荣. 基于型材网格平台的紧凑 85Rb喷泉钟光路设计[J]. 光学学报, 2020, 40(18): 1802001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF