首页 > 论文 > 光学学报 > 40卷 > 3期(pp:0306001--1)

无线光通信中的增强型光空间调制

Enhanced Optical Spatial Modulation in Wireless Optical Communication

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统光空间调制传输速率低、激光器利用率不高等问题,提出了一种激活激光器数目可变的增强型光空间调制(EOSM)系统。通过每次激活一个或两个激光器的索引组合增大空间域映射,并结合脉冲位置调制(PPM)的特点来区分不同类的映射。详细介绍了空间域和信号域的映射规则,利用联合界技术推导出EOSM系统在弱湍流信道下的误码率的理论上界,并对EOSM系统与现有的三种光空间调制进行性能对比。结果表明:当激光器数和调制阶数固定时,EOSM系统的传输速率大于空间脉冲位置调制(SPPM)和空间脉冲幅度调制(SPAM)系统。当传输速率为6 bit/s、调制阶数为4时,EOSM系统的误码率与SPPM系统相近,但明显优于SPAM系统和广义空间脉冲位置调制(GSPPM)系统。当误码率为10 -3时,EOSM系统的信噪比比SPAM和GSPPM系统分别改善了约4.5 dB和1.2 dB。EOSM系统的计算复杂度比SPAM和GSPPM系统分别提高了17.78%和2.6%,比SPPM系统降低了70.2%。EOSM系统提高了激光器的利用率,大幅降低了系统的建设成本。

Abstract

In this paper, an enhanced optical spatial modulation (EOSM) system with a variable number of activated lasers is proposed to solve the problems of low transmission rate and laser utilization in the traditional optical spatial modulation system. The spatial domain mapping is increased by activating index combinations of one or two separate lasers each time. The characteristics of pulse position modulation (PPM) are specifically utilized to distinguish the various types of mapping. In this work, a detailed discussion of the mapping rules of the spatial domain and the signal domain is given. The theoretical upper bound of the bit error rate (BER) of the EOSM system for the weak turbulence channel is derived by using the joint bound technique. Furthermore, the performance of the proposed system is compared with that of three existing optical spatial modulation systems. The results show that the transmission rate of the EOSM system is greater than those of the spatial pulse position modulation (SPPM) and spatial pulse amplitude modulation (SPAM) systems when the number of lasers and the modulation order are fixed. Considering a transmission rate of 6 bit·s -1 and a modulation order of 4, the BER of EOSM system is similar to that of the SPPM system, but it is significantly better than those of the SPAM system and the generalized spatial pulse position modulation (GSPPM) system. When the BER is 10 -3, the signal-to-noise ratio of EOSM system is improved by 4.5 dB and 1.2 dB compared with those of the SPAM and GSPPM systems, respectively. The computational complexity of the EOSM system is 17.78% and 2.6% higher than those of the SPAM and GSPPM systems, respectively, and 70.2% lower than that of the SPPM system. Moreover, the EOSM system can effectively improve the utilization of the laser and greatly reduce the construction cost of the system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.12

DOI:10.3788/AOS202040.0306001

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、甘肃省教育厅高等学校科学研究资助项目、兰州理工大学博士基金;

收稿日期:2019-07-26

修改稿日期:2019-09-26

网络出版日期:2020-02-01

作者单位    点击查看

张悦:兰州理工大学计算机与通信学院, 甘肃 兰州 730050
王惠琴:兰州理工大学计算机与通信学院, 甘肃 兰州 730050
曹明华:兰州理工大学计算机与通信学院, 甘肃 兰州 730050
黄瑞:兰州理工大学电气工程与信息工程学院, 甘肃 兰州 730050

联系人作者:王惠琴(15117024169@139.com)

备注:国家自然科学基金、甘肃省教育厅高等学校科学研究资助项目、兰州理工大学博士基金;

【1】Cao Y, Zhang X, Peng X F, et al. Cascade scheme based on multiple-input multiple-output in spatial optical communication [J]. Acta Optica Sinica. 2018, 38(1): 0106003.
曹阳, 张勋, 彭小峰, 等. 空间光通信中基于多输入多输出的级联码方案研究 [J]. 光学学报. 2018, 38(1): 0106003.

【2】Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation [J]. Chinese Journal of Lasers. 2016, 43(7): 0706004.
韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能 [J]. 中国激光. 2016, 43(7): 0706004.

【3】Pham H T T, Dang N T. Performance improvement of spatial modulation-assisted FSO systems over Gamma-Gamma fading channels with geometric spreading [J]. Photonic Network Communications. 2017, 34(2): 213-220.

【4】Zhu J X. Theory and technology of visible light communication based on spatial modulation [D]. Nanjing: Southeast University. 2018, 2-4.
朱建霞. 基于空间调制的可见光通信理论与技术研究 [D]. 南京: 东南大学. 2018, 2-4.

【5】Mesleh R Y, Haas H, Sinanovic S, et al. Spatial modulation [J]. IEEE Transactions on Vehicular Technology. 2008, 57(4): 2228-2241.

【6】Xiao L X. Researches on spatial modulation based large-scale multiple-input multiple-output transmission technology [D]. Chengdu: University of Electronic Science and Technology of China. 2017, 1-8.
肖丽霞. 基于空间调制的大规模MIMO传输技术研究 [D]. 成都: 电子科技大学. 2017, 1-8.

【7】Mesleh R, Mehmood R, Elgala H, et al. Indoor MIMO optical wireless communication using spatial modulation . [C]//2010 IEEE International Conference on Communications, May 23-27, 2010, Cape Town, South Africa. New York: IEEE. 2010, 11412210.

【8】Mesleh R, Elgala H, Haas H. Optical spatial modulation [J]. Journal of Optical Communications and Networking. 2011, 3(3): 234-244.

【9】Fath T. Haas H, di Renzo M, et al. Spatial modulation applied to optical wireless communications in indoor LOS environments . [C]//2011 IEEE Global Telecommunications Conference-GLOBECOM 2011, December 5-9, 2011, Kathmandu, Nepal. New York: IEEE. 2011, 12505444.

【10】Fath T, Haas H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments [J]. IEEE Transactions on Communications. 2013, 61(2): 733-742.

【11】Jaiswal A, Bhatnagar M R, Jain V K. Performance of optical space shift keying over Gamma-Gamma fading with pointing error [J]. IEEE Photonics Journal. 2017, 9(2): 7200716.

【12】Jaiswal A, Abaza M, Bhatnagar M R, et al. An investigation of performance and diversity property of optical space shift keying-based FSO-MIMO system [J]. IEEE Transactions on Communications. 2018, 66(9): 4028-4042.

【13】Pham H T T, Chu D B, Dang N T. Performance analysis of spatial PPM-based free-space optical communication systems with Gaussian beam . [C]//2014 International Conference on Advanced Technologies for Communications (ATC 2014), October 15-17, 2014, Hanoi, Vietnam. New York: IEEE. 2014, 144-148.

【14】?zbilgin T, Koca M. Optical spatial modulation over atmospheric turbulence channels [J]. Journal of Lightwave Technology. 2015, 33(11): 2313-2323.

【15】Olanrewaju H G, Thompson J, Popoola W O. Generalized spatial pulse position modulation for optical wireless communications . [C]//2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), September 18-21, 2016, Montreal, QC, Canada. New York: IEEE. 2016, 16759118.

【16】Alaka S P, Narasimhan T L, Chockalingam A. Generalized spatial modulation in indoor wireless visible light communication . [C]//2015 IEEE Global Communications Conference (GLOBECOM), December 6-10, 2015, San Diego, CA, USA. New York: IEEE. 2015, 15820546.

【17】Rajesh Kumar C, Jeyachitra R K. Power efficient generalized spatial modulation MIMO for indoor visible light communications [J]. IEEE Photonics Technology Letters. 2017, 29(11): 921-924.

【18】Wang H Q, Wang X, Lynette K, et al. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel [J]. Optics & Laser Technology. 2018, 102: 153-159.

【19】Wilson S G, Brandt-Pearce M, Cao Q L, et al. Optical repetition MIMO transmission with multipulse PPM [J]. IEEE Journal on Selected Areas in Communications. 2005, 23(9): 1901-1910.

【20】Abaza M, Mesleh R, Mansour A, et al. Performance analysis of space-shift keying over negative-exponential and log-normal FSO channels [J]. Chinese Optics Letters. 2015, 13(5): 051001.

引用该论文

Zhang Yue,Wang Huiqin,Cao Minghua,Huang Rui. Enhanced Optical Spatial Modulation in Wireless Optical Communication[J]. Acta Optica Sinica, 2020, 40(3): 0306001

张悦,王惠琴,曹明华,黄瑞. 无线光通信中的增强型光空间调制[J]. 光学学报, 2020, 40(3): 0306001

被引情况

【1】毛一聪,王惠琴,张悦,曹明华. 光空间调制技术的研究进展. 光电工程, 2020, 47(3): 190712--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF