首页 > 论文 > 中国激光 > 47卷 > 1期(pp:102006--1)

激光深熔焊等离子体电信号振荡特征与焊缝熔深的特征关系

Relation between Plasma Electrical Signal Oscillation and Weld Depth in Laser Deep Penetration Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对激光深熔焊接过程的监控问题,基于小孔内部压力平衡条件分析了小孔振荡和小孔深度的关系。在此基础上基于小孔行为与等离子体行为的耦合性,以及等离子体振荡特征与等离子体电信号波动特征的一致性,利用短时自相关分析方法分析了A304不锈钢和Q235碳钢在激光深熔焊接过程中等离子体电信号振荡周期与焊缝熔深之间的关系。结果表明,等离子体电信号振荡周期随焊缝熔深的增加而增大,并且不同焊接材料的等离子体电信号振荡周期与焊缝熔深之间的关系不同。最后,在可变热输入连续焊接验证实验中,在焊接过程稳定的条件下,等离子体电信号的短时自相关分析结果与焊缝熔深之间有比较好的对应关系,与所分析的小孔振荡特征方程具有一致性。

Abstract

In this study, the relation between keyhole oscillation and depth is analyzed based on the internal pressure balance conditions of the keyhole to allow real-time monitoring of the laser penetration welding process. Then, based on the coupling of keyhole behavior with plasma behavior and consistency of plasma oscillation characteristics with plasma electrical signal fluctuation characteristics, we use a short-time autocorrelation analysis method to analyze the relation between the oscillation period of a plasma electrical signal and weld depth during laser penetration welding of A304 stainless steel and Q235 carbon steel. Results show that the plasma electrical signal''s oscillation period increases with an increase in the weld depth, and the relations between the plasma electrical signal''s oscillation period and weld depth differ when the welding materials are different. Finally, in a variable heat input continuous welding verification test, we obtain a good correspondence between the short-time autocorrelation analysis results of plasma electrical signals and weld penetration when the welding process is stable, which is consistent with the keyhole oscillation characteristic equation we analyzed.

广告组5 - 光束分析仪
补充资料

中图分类号:TG456.7

DOI:10.3788/CJL202047.0102006

所属栏目:激光制造

基金项目:国家自然科学基金;

收稿日期:2019-08-21

修改稿日期:2019-09-26

网络出版日期:2020-01-01

作者单位    点击查看

许赛:天津大学材料科学与工程学院, 天津300350
杨立军:天津大学材料科学与工程学院, 天津300350天津大学天津市现代连接技术重点实验室, 天津300350
徐书峰:山西太钢不锈钢股份有限公司不锈冷轧厂, 山西 太原 030003
黄一鸣:天津大学材料科学与工程学院, 天津300350
赵圣斌:天津大学材料科学与工程学院, 天津300350
李珊珊:天津大学材料科学与工程学院, 天津300350

联系人作者:徐书峰(xusf@tisco.com.cn); 黄一鸣(ymhuang26@tju.edu.cn);

备注:国家自然科学基金;

【1】Peng J, Hu S M, Wang X X, et al. Effect of filler metal on three-dimensional transient behavior of keyholes and molten pools in laser welding [J]. Chinese Journal of Lasers. 2018, 45(1): 0102003.
彭进, 胡素梦, 王星星, 等. 填材对激光焊接匙孔与熔池三维瞬态行为的影响 [J]. 中国激光. 2018, 45(1): 0102003.

【2】Yang W X, Xin J J, Fang C, et al. Microstructures and mechanical properties of hundred-millimeter-grade 304 stainless steel joints by ultra-narrow gap laser welding [J]. Chinese Journal of Lasers. 2018, 45(7): 0702005.
杨武雄, 信纪军, 方超, 等. 百毫米级304不锈钢超窄间隙激光焊接头的组织及性能 [J]. 中国激光. 2018, 45(7): 0702005.

【3】Huang Y M, Xu S, Yang L J, et al. Defect detection during laser welding using electrical signals and high-speed photography [J]. Journal of Materials Processing Technology. 2019, 271: 394-403.

【4】Qiu W C, Yang L J, Liu T, et al. Optic-electrical signal analysis of plasma fluctuation characteristics in laser deep penetration welding [J]. Chinese Journal of Lasers. 2018, 45(4): 0402001.
邱文聪, 杨立军, 刘桐, 等. 激光深熔焊等离子体波动特征光电信号分析 [J]. 中国激光. 2018, 45(4): 0402001.

【5】Buvanashekaran G, Shanmugam S N, Sankaranarayanasamy K, et al. A study of laser welding modes with varying beam energy levels [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2009, 223(5): 1141-1156.

【6】Kawahito Y, Mizutani M, Katayama S. High quality welding of stainless steel with 10 kW high power fibre laser [J]. Science and Technology of Welding and Joining. 2009, 14(4): 288-294.

【7】Blecher J J. Galbraith C M,van Vlack C, et al. Real time monitoring of laser beam welding keyhole depth by laser interferometry [J]. Science and Technology of Welding and Joining. 2014, 19(7): 560-564.

【8】Tenner F, Brock C, Kl?mpfl F, et al. Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for the modeling of the keyhole geometry [J]. Optics and Lasers in Engineering. 2015, 64: 32-41.

【9】Seto N, Katayama S, Matsunawa A. High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation [J]. Journal of Laser Applications. 2000, 12(6): 245-250.

【10】Mrna L, Sarbort M, Rerucha S, et al. Autocorrelation analysis of plasma plume light emissions in deep penetration laser welding of steel [J]. Journal of Laser Applications. 2017, 29(1): 012009.

【11】Sibillano T, Rizzi D, Ancona A, et al. Spectroscopic monitoring of penetration depth in CO2 Nd∶YAG and fiber laser welding processes [J]. Journal of Materials Processing Technology. 2012, 212(4): 910-916.

【12】Yang R X, Yang L J, Liu T, et al. Spectral analysis of laser induced plasma electrical signals from Nd∶YAG laser welding of A304 stainless steels [J]. Chinese Journal of Lasers. 2016, 43(8): 0802008.
杨瑞霞, 杨立军, 刘桐, 等. A304不锈钢Nd∶YAG激光焊光致等离子体电信号频谱分析 [J]. 中国激光. 2016, 43(8): 0802008.

【13】Zhao S B, Yang L J, Liu T, et al. Analysis of plasma oscillations by electrical detection in Nd∶YAG laser welding [J]. Journal of Materials Processing Technology. 2017, 249: 479-489.

【14】Qiu W C, Yang L J, Zhao S B, et al. A study on plasma plume fluctuation characteristic during A304 stainless steel laser welding [J]. Journal of Manufacturing Processes. 2018, 33: 1-9.

【15】Yu G, Yu H J. Laser manufacturing technology[M]. Beijing: National Defense Industry Press, 2012, 205-209.
虞钢, 虞和济. 激光制造工艺力学[M]. 北京: 国防工业出版社, 2012, 205-209.

【16】Klein T, Vicanek M, Kroos J, et al. Oscillations of the keyhole in penetration laser beam welding [J]. Journal of Physics D: Applied Physics. 1994, 27(10): 2023-2030.

【17】Trappe J, Kroos J, Tix C, et al. On the shape and location of the keyhole in penetration laser welding [J]. Journal of Physics D: Applied Physics. 1994, 27(10): 2152-2154.

【18】Kroos J, Gratzke U, Vicanek M, et al. Dynamic behaviour of the keyhole in laser welding [J]. Journal of Physics D: Applied Physics. 1993, 26(3): 481-486.

【19】Klein T, Vicanek M, Simon G. Forced oscillations of the keyhole in penetration laser beam welding [J]. Journal of Physics D: Applied Physics. 1996, 29(2): 322-332.

【20】Zhao S B, Yang L J, Liu T, et al. Electrical signal characteristics of plasma in YAG laser welding of A304 stainless steels under different modes [J]. Chinese Journal of Lasers. 2016, 43(12): 1202005.
赵圣斌, 杨立军, 刘桐, 等. 不同焊接模式下的A304不锈钢YAG激光焊等离子体的电信号特征 [J]. 中国激光. 2016, 43(12): 1202005.

【21】Dowden J, Davis M, Kapadia P. Some aspects of the fluid dynamics of laser welding [J]. Journal of Fluid Mechanics. 1983, 126: 123-146.

【22】Sabbaghzadeh J, Dadras S, Torkamany J. Comparison of pulsed Nd∶YAG laser welding qualitative features with plasma plume thermal characteristics [J]. Journal of Physics D: Applied Physics. 2007, 40(4): 1047-1051.

引用该论文

Xu Sai,Yang Lijun,Xu Shufeng,Huang Yiming,Zhao Shengbin,Li Shanshan. Relation between Plasma Electrical Signal Oscillation and Weld Depth in Laser Deep Penetration Welding[J]. Chinese Journal of Lasers, 2020, 47(1): 0102006

许赛,杨立军,徐书峰,黄一鸣,赵圣斌,李珊珊. 激光深熔焊等离子体电信号振荡特征与焊缝熔深的特征关系[J]. 中国激光, 2020, 47(1): 0102006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF