首页 > 论文 > 光学学报 > 40卷 > 2期(pp:0212003--1)

基于二元光学透镜光谱聚焦特性的微间距测量

Microspacing Measurement Based on Spectral Focusing Characteristics of Binary Optical Lens

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统色散透镜的色散线性度很难保证为绝对线性,测量范围很窄的问题,且为了尽量减小球差尤其是对测量影响最大的轴向球差,提出一种将二元光学透镜引入到光谱共聚焦微小间距测量的方法。该方法中二元光学透镜的色散只与入射光的波长有关,且严格与入射光的波长成反比。二元光学透镜不存在球差问题且可以补偿校正测量系统中其他光学组件的未知色差。实验中选择510~690 nm范围内的光谱,利用分辨率为0.5 nm的光谱仪接收光谱信息,测得该方法的测量量程为13.95 mm,测量误差为0.6 μm,并通过对光盘上的刻录间距进行测量,验证了该方法的有效性。

Abstract

A method of introducing a binary optical lens into spectral confocal micro-spacing measurement is proposed to address the problems that the dispersion linearity of a conventional dispersion lens is difficult to ensure absolute linearity and that the measurement range is narrow, meanwhile minimizing spherical aberration, particularly the axial spherical aberration which has the greatest influence on measurement. In the proposed method, the dispersion of the binary optical lens is only related to the wavelength of the incident light and it is strictly inversely proportional to the wavelength of the incident light. Binary optical lenses do not exhibit spherical aberration problems and can also compensate for the unknown chromatic aberrations of other optical components in the calibration measurement system. In the experiment, a spectrum in the range of 510--690 nm is selected, and the spectral information is received by a spectrometer with a 0.5-nm resolution. Furthermore, the measurement range of this method is 13.95 mm, the measurement error is 0.6 μm, and the recording spacing with respect to the optical disc is measured to verify the effectiveness of the proposed method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.1

DOI:10.3788/AOS202040.0212003

所属栏目:仪器,测量与计量

基金项目:微电子装备四川青年科技创新团队、中科院装备项目;

收稿日期:2019-07-24

修改稿日期:2019-09-19

网络出版日期:2020-02-01

作者单位    点击查看

王思沫:中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川 成都 610209中国科学院大学, 北京 100049
李凡星:中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川 成都 610209中国科学院大学, 北京 100049
彭伏平:中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川 成都 610209中国科学院大学, 北京 100049
杜佳林:中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川 成都 610209中国科学院大学, 北京 100049
严伟:中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川 成都 610209中国科学院大学, 北京 100049

联系人作者:严伟(yanwei@ioe.ac.cn)

备注:微电子装备四川青年科技创新团队、中科院装备项目;

【1】Jordano G, Navarro C, Vázquez J, et al. Measuring wear in a fretting test with a confocal microscope [J]. Key Engineering Materials. 2018, 774: 461-466.

【2】Maulucci G, di Giacinto F, de Angelis C, et al. Real time quantitative analysis of lipid storage and lipolysis pathways by confocal spectral imaging of intracellular micropolarity [J]. Biochimica Et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2018, 1863(7): 783-793.

【3】Dubreil L, Aviat F, Anthoine V, et al. Confocal spectral microscopy: an innovative tool for tracking of pathogen agents on contaminated wooden surfaces [J]. European Journal of Wood and Wood Products. 2018, 76(3): 1083-1085.

【4】McBride J W, Boltryk P J, Zhao Z. The relationship between surface incline and con-focal chromatic aberration sensor response [J]. Proceedings of SPIE. 2007, 6618: 66181F.

【5】Zhou K, Ji H J, Liu H B. Analysis for the effect of measured surface character to the measuing accuracy of laser triangulation method measurement [J]. Optics & Optoelectronic Technology. 2009, 7(2): 70-73.
周坤, 季海焦, 刘海滨. 激光三角法测量中被测物表面特性对测量精度影响的分析 [J]. 光学与光电技术. 2009, 7(2): 70-73.

【6】Zhu Z T, Pei W D, Li Y, et al. Research and implementation of laser triangulation system based on telecentric lens [J]. Laser & Optoelectronics Progress. 2018, 55(3): 031002.
朱铮涛, 裴炜冬, 李渊, 等. 基于远心镜头的激光三角测距系统研究与实现 [J]. 激光与光电子学进展. 2018, 55(3): 031002.

【7】Wu P Y. Research on design technology of spectral confocal displacement sensor [D]. Beijing: China Academy of Engineering Physics. 2012, 1-6.
武芃樾. 光谱共焦位移传感器设计技术研究 [D]. 北京: 中国工程物理研究院. 2012, 1-6.

【8】Liu Z K. Some issue of wavelength encoding fiber optical position sensor with varied line-space grating [D]. Hefei: University of Science and Technology of China. 2009, 3-5.
刘正坤. 变栅距光栅位移传感器的若干问题研究 [D]. 合肥: 中国科学技术大学. 2009, 3-5.

【9】Zhu W B, Cao S H. Application of confocal chromatic displacement sensors to measuring thickness of transparent material [J]. OME Information. 2011, 28(9): 50-53.
朱万彬, 曹世豪. 光谱共焦位移传感器测量透明材料厚度的应用 [J]. 光机电信息. 2011, 28(9): 50-53.

【10】Qiao Y, Zhang N, Liu T, et al. Optical system design for the measurement of center thickness of lens based on confocal technology [J]. Optical Technique. 2010, 36(6): 857-859.
乔杨, 张宁, 刘涛, 等. 基于共焦法透镜中心厚度检测的光学系统设计 [J]. 光学技术. 2010, 36(6): 857-859.

【11】Liu Q, Yang W C, Yuan D C, et al. Design of dispersive objective for chromatic confocal displacement sensor [J]. Opto-Electronic Engineering. 2011, 38(7): 131-135.
刘乾, 杨维川, 袁道成, 等. 光谱共焦位移传感器的色散物镜设计 [J]. 光电工程. 2011, 38(7): 131-135.

【12】Liu Q, Wang Y, Yang W C, et al. Chromatic confocal microscope with linear dispersive objective [J]. High Power Laser and Particle Beams. 2014, 26(5): 051010.
刘乾, 王洋, 杨维川, 等. 线性色散设计的光谱共焦测量技术 [J]. 强激光与粒子束. 2014, 26(5): 051010.

【13】Jin B S, Deng W Y, Niu C H, et al. Design of dispersive lens group for chromatic confocal measuring system [J]. Optical Technique. 2012, 38(6): 660-664.
金博石, 邓文怡, 牛春晖, 等. 光谱共焦测量系统中的色散透镜组设计 [J]. 光学技术. 2012, 38(6): 660-664.

【14】Tian Y, Liu B. Design of dispersion lens for chromatic confocal displacement sensor [J]. Optical Technique. 2018, 44(3): 381-384.
田雨, 刘宾. 光谱共焦位移传感器色散镜头设计 [J]. 光学技术. 2018, 44(3): 381-384.

【15】Luo D, Kuang C F, Liu X. Fiber-based chromatic confocal microscope with Gaussian fitting method [J]. Optics & Laser Technology. 2012, 44(4): 788-793.

【16】Dobson S L, Sun P C, Fainman Y. Diffractive lenses for chromatic confocal imaging [J]. Applied Optics. 1997, 36(20): 4744-4748.

【17】Yu B. The study on stare hyperspectral image system using longitudinal chromatic aberration of binary optical lens [D]. Changchun: University of Chinese Academy of Sciences. 2003, 3-13.
于斌. 利用二元光学透镜轴向色散的凝视光谱成像性能研究 [D]. 长春: 中国科学院大学. 2003, 3-13.

【18】Yu B, Li H S, Yu B X, et al. Optical design of spectrum-dividing system for binary optic hyperspectral imager [J]. Optical Technique. 2003, 29(1): 73-75.
于斌, 李宏生, 禹秉熙, 等. 二元光学超光谱成像仪分光系统设计 [J]. 光学技术. 2003, 29(1): 73-75.

【19】Miks A, Novak J, Novak P. Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor [J]. Applied Optics. 2010, 49(17): 3259-3264.

引用该论文

Wang Simo,Li Fanxing,Peng Fuping,Du Jialin,Yan Wei. Microspacing Measurement Based on Spectral Focusing Characteristics of Binary Optical Lens[J]. Acta Optica Sinica, 2020, 40(2): 0212003

王思沫,李凡星,彭伏平,杜佳林,严伟. 基于二元光学透镜光谱聚焦特性的微间距测量[J]. 光学学报, 2020, 40(2): 0212003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF