首页 > 论文 > 中国激光 > 47卷 > 1期(pp:101004--1)

基于循环平稳随机序列的脉冲激光测距方法

Pulsed Laser Ranging Method Using Cyclostationary Random Sequences

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

脉冲定时误差会使测距精度恶化,为此,提出了一种基于循环平稳随机序列的脉冲激光测距方案。该方案首先将回波脉冲定时信号映射在周期基准信号上,由此构造出一个循环平稳的随机序列,将对脉冲定时时间的测量转化为对循环平稳随机序列的参数估计。该方法利用了循环平稳随机过程在时间上呈现为周期性平稳变化的特征,从携带时间抖动等误差的测量数据中高精度地估计参数,从而获得高精度的目标距离。为了获得循环平稳随机序列测量数据,提出了一种遍历欠采样方法,以解决在采样频率与信号频率相差很大的条件下进行等效等间隔采样的困难。以此原理研制出的脉冲激光测距仪具有精度高、原理结构简单等优点,测试后可知,在激光出瞳平均功率为1 mW的条件下,当信噪比为10时,无合作目标测程为300 m,测距精度为±(2 mm+2×10 -6D)。

Abstract

To avoid deterioration in the ranging accuracy caused by pulse-timing errors, a pulsed laser ranging method using cyclostationary random sequences is proposed. In this method, echo pulse-timing signals are mapped onto periodic reference signals to construct cyclostationary random sequences, which converts measurements of pulse-timing moments into parameter estimation of these sequences. The use of periodic stationary changes in time for cyclostationary stochastic processes enables the accurate estimation of parameters from the measurement data with timing jitter errors. High-precision target distances can then be obtained. An ergodic undersampling method is also proposed to overcome the difficulty of using equivalent and equally-spaced sampling for obtaining the measurement data of cyclostationary random sequences when the sampling and signal frequencies are very different. A pulsed laser rangefinder based on these principles is developed with the advantages of high accuracy and simple structure. When the laser exit pupil average power is 1 mW and the signal-to-noise ratio is 10, tests show that the non-cooperative target range is 300 m and the range accuracy is ±(2 mm+2×10 -6D ).

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247

DOI:10.3788/CJL202047.0101004

所属栏目:激光器件与激光物理

收稿日期:2019-08-15

修改稿日期:2019-09-26

网络出版日期:2020-01-01

作者单位    点击查看

姜博:北京石油化工学院光机电装备技术北京市重点实验室, 北京 102617
黄民双:北京石油化工学院光机电装备技术北京市重点实验室, 北京 102617
关在辉:北京石油化工学院光机电装备技术北京市重点实验室, 北京 102617

联系人作者:黄民双(huangminshuang@bipt.edu.cn)

【1】Luo Y, He Y, Geng L M, et al. Long-distance laser ranging lidar based on photon counting technology [J]. Chinese Journal of Lasers. 2016, 43(5): 0514001.
罗远, 贺岩, 耿立明, 等. 基于光子计数技术的远程测距激光雷达 [J]. 中国激光. 2016, 43(5): 0514001.

【2】Kostamovaara J, Huikari J, Hallman L, et al. On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques [J]. IEEE Photonics Journal. 2015, 7(2): 7800215.

【3】Huang M S, Long T Y, Liu H H, et al. A high-precision pulsed laser ranging time interval measurement technology based on sine curves method [J]. Chinese Journal of Lasers. 2014, 41(8): 0808002.
黄民双, 龙腾宇, 刘慧慧, 等. 基于正弦曲线的高精度脉冲激光测距时间间隔测量技术 [J]. 中国激光. 2014, 41(8): 0808002.

【4】Kurtti S, Kostamovaara J. Laser radar receiver channel with timing detector based on front end unipolar-to-bipolar pulse shaping [J]. IEEE Journal of Solid-State Circuits. 2009, 44(3): 835-847.

【5】Nissinen J, Nissinen I, Kostamovaara J. Integrated receiver including both receiver channel and TDC for a pulsed time-of-flight laser rangefinder with cm-level accuracy [J]. IEEE Journal of Solid-State Circuits. 2009, 44(5): 1486-1497.

【6】Palojarvi P, Ruotsalainen T, Kostamovaara J. A 250-MHz BiCMOS receiver channel with leading edge timing discriminator for a pulsed time-of-flight laser rangefinder [J]. IEEE Journal of Solid-State Circuits. 2005, 40(6): 1341-1349.

【7】Cho H S, Kim C H, Lee S G. A high-sensitivity and low-walk error LADAR receiver for military application [J]. IEEE Transactions on Circuits and Systems I: Regular Papers. 2014, 61(10): 3007-3015.

【8】Kurtti S, Kostamovaara J. An integrated laser radar receiver channel utilizing a time-domain walk error compensation scheme [J]. IEEE Transactions on Instrumentation and Measurement. 2011, 60(1): 146-157.

【9】Huang M S, Ma P, Liu X C. Multi-pulse laser ranging method for pre-detection with high frequency resonance [J]. Acta Physica Sinica. 2018, 67(7): 074202.
黄民双, 马鹏, 刘晓晨. 高频共振预探测多脉冲激光测距方法 [J]. 物理学报. 2018, 67(7): 074202.

【10】Huang M S, Liu X C, Ma P. Periodic error compensation of pulsed time-of-flight laser ranging system [J]. Infrared and Laser Engineering. 2018, 47(3): 0317004.
黄民双, 刘晓晨, 马鹏. 脉冲飞行时间激光测距系统中周期误差补偿 [J]. 红外与激光工程. 2018, 47(3): 0317004.

【11】Huang M S, Guan Z H. A fast and high-precision pulse laser ranging method based on cursor principle [J]. Chinese Journal of Lasers. 2019, 46(5): 0510001.
黄民双, 关在辉. 基于游标原理的快速高精度脉冲激光测距方法 [J]. 中国激光. 2019, 46(5): 0510001.

引用该论文

Jiang Bo,Huang Minshuang,Guan Zaihui. Pulsed Laser Ranging Method Using Cyclostationary Random Sequences[J]. Chinese Journal of Lasers, 2020, 47(1): 0101004

姜博,黄民双,关在辉. 基于循环平稳随机序列的脉冲激光测距方法[J]. 中国激光, 2020, 47(1): 0101004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF