首页 > 论文 > 光学学报 > 39卷 > 12期(pp:1223005--1)

柔性超薄吸透一体化电磁窗结构设计

Design of Transmission-Absorption-Integrated Electromagnetic Window with Flexibility and Ultrathin Thickness

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种柔性超薄吸透一体化电磁窗结构的设计方法,其能够在宽入射角范围内吸收任意极化的电磁波,并且在特定频段内具有几乎透明的透射窗口。测试结果表明,该结构在4.46 GHz时吸收率为93%,在2.86 GHz时透射率为98%,对应的插入损耗为0.09 dB。样品的整体厚度为0.288 mm,超薄的厚度使得该结构柔性可弯曲,易与曲面目标共形。在此基础上,提出宽带吸透一体化电磁窗结构的设计方法,仿真结果表明,在7.7~12.2 GHz吸收率都能达到90%,在4.35 GHz时透射率为90%,且具有宽入射角特性。

Abstract

This study proposes a novel method for designing an integrated absorption-transmission flexible ultrathin electromagnetic window, which can absorb the unpolarized incident waves over a wide range of angles and is almost transparent at a given frequency band. The experimental results demonstrate 93% absorption at 4.46 GHz and 98% transmittance at 2.86 GHz, indicating an insertion loss of 0.09 dB. The total sample thickness is 0.288 mm, which makes the structure flexible and easy to conform to the curved target. Furthermore, a method for designing a broadband-integrated absorption-transmission electromagnetic window is proposed. The simulation results denote that the absorption can reach 90% at 7.7-12.2 GHz and that the transmittance is 90% at 4.35 GHz. The proposed broadband structure performs appropriately over a wide range of incident angles.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1223005

所属栏目:光学器件

基金项目:重庆市自然科学基金;

收稿日期:2019-07-08

修改稿日期:2019-08-08

网络出版日期:2019-12-01

作者单位    点击查看

李莉霞:西南大学物理科学与技术学院, 重庆 400715
李荣强:成都信息工程大学电子工程学院, 四川 成都 610225
王彪:西南大学物理科学与技术学院, 重庆 400715
邓涛:西南大学物理科学与技术学院, 重庆 400715
韩天成:西南大学物理科学与技术学院, 重庆 400715

联系人作者:李荣强(liyq2011@cuit.edu.cn); 韩天成(tchan123@swu.edu.cn);

备注:重庆市自然科学基金;

【1】Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens [J]. Science. 2005, 308(5721): 534-537.

【2】Yamamoto K, Nomura S. Energy compensated mode in a waveguide composed of lossy left-handed metamaterial [J]. Optics Communications. 2007, 276(1): 191-195.

【3】Cheng Z X, Chen L, Zang X F, et al. Ultrathin dual-mode filtering characteristics of terahertz metamaterials with electrically unconnected and connected U-shaped resonators array [J]. Optics Communications. 2015, 342: 20-25.

【4】Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science. 2006, 314(5801): 977-980.

【5】Li G H, Chen X S, Li O P, et al. A novel plasmonic resonance sensor based on an infrared perfect absorber [J]. Journal of Physics D: Applied Physics. 2012, 45(20): 205102.

【6】Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Physical Review Letters. 2008, 100(20): 207402.

【7】Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization [J]. Optics Express. 2008, 16(10): 7181-7188.

【8】Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization [J]. Applied Physics Letters. 2009, 95(24): 241111.

【9】Yao G, Ling F R, Yue J, et al. Dual-band tunable perfect metamaterial absorber in the THz range [J]. Optics Express. 2016, 24(2): 1518-1527.

【10】Wang B X, Zhai X, Wang G Z, et al. A novel dual-band terahertz metamaterial absorber for a sensor application [J]. Journal of Applied Physics. 2015, 117(1): 014504.

【11】Liu Y H, Fang S L, Gu S, et al. Multiband and broadband metamaterial absorbers [J]. Acta Physica Sinica. 2013, 62(13): 134102.
刘亚红, 方石磊, 顾帅, 等. 多频与宽频超材料吸收器 [J]. 物理学报. 2013, 62(13): 134102.

【12】Ye Q W, Liu Y, Lin H, et al. Multi-band metamaterial absorber made of multi-gap SRRs structure [J]. Applied Physics A. 2012, 107(1): 155-160.

【13】Sun L K, Cheng H F, Zhou Y J, et al. Broadband metamaterial absorber based on coupling resistive frequency selective surface [J]. Optics Express. 2012, 20(4): 4675-4680.

【14】Zhang H, Ma Y, Zhang H F, et al. Band enhanced ultra-broadband terahertz absorber based on a high-impedance surface and cavity resonance [J]. Applied Optics. 2018, 57(31): 9208-9214.

【15】Cai Q, Ye R W, Fang Y T. Broadband absorption based on graphene metamaterial composite structure [J]. Chinese Journal of Lasers. 2017, 44(10): 1003005.
蔡强, 叶润武, 方云团. 石墨烯超材料复合结构的宽带吸收 [J]. 中国激光. 2017, 44(10): 1003005.

【16】Shen Y, Zhang J Q, Shen L H, et al. Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice [J]. Optics Express. 2018, 26(22): 28363-28375.

【17】Zhou Q, Yin X W, Ye F, et al. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure [J]. Applied Physics A. 2019, 125(2): 131.

【18】Zhang C, Cheng Q, Yang J, et al. Broadband metamaterial for optical transparency and microwave absorption [J]. Applied Physics Letters. 2017, 110(14): 143511.

【19】Cheng Y Z, Gong R Z, Zhao J C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves [J]. Optical Materials. 2016, 62: 28-33.

【20】Zhang J N, Wang G C, Zhang B, et al. Photo-excited broadband tunable terahertz metamaterial absorber [J]. Optical Materials. 2016, 54: 32-36.

【21】Chen X, Xue W R, Zhao C, et al. Ultra-broadband infrared absorber based on LiF and NaF [J]. Acta Optica Sinica. 2018, 38(1): 0123002.
陈曦, 薛文瑞, 赵晨, 等. 基于LiF和NaF的超宽带红外吸收器 [J]. 光学学报. 2018, 38(1): 0123002.

【22】Xie T, Chen Z, Ma R Y, et al. A wide-angle and polarization insensitive infrared broad band metamaterial absorber [J]. Optics Communications. 2017, 383: 81-86.

【23】Duan X Y, Chen S Q, Liu W W, et al. Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime [J]. Journal of Optics. 2014, 16(12): 125107.

【24】Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces [J]. IEEE Transactions on Antennas and Propagation. 2010, 58(5): 1551-1558.

【25】Bian B R, Liu S B, Wang S Y, et al. Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber [J]. Journal of Applied Physics. 2013, 114(19): 194511.

【26】Zhang B X, Zhao Y H, Hao Q Z, et al. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array [J]. Optics Express. 2011, 19(16): 15221-15228.

【27】An S N, Xu H B, Zhang Y L, et al. Design of a polarization-insensitive wideband tunable metamaterial absorber based on split semi-circle ring resonators [J]. Journal of Applied Physics. 2017, 122(2): 025113.

【28】Li L, Xi R, Liu H X, et al. Broadband polarization-independent and low-profile optically transparent metamaterial absorber [J]. Applied Physics Express. 2018, 11(5): 052001.

【29】Han Y, Che W Q, Xiu X, et al. Switchable low-profile broadband frequency-selective rasorber/absorber based on slot arrays [J]. IEEE Transactions on Antennas and Propagation. 2017, 65(12): 6998-7008.

【30】Omar A A, Shen Z X, Huang H. Absorptive frequency-selective reflection and transmission structures [J]. IEEE Transactions on Antennas and Propagation. 2017, 65(11): 6173-6178.

【31】Chen Q, Yang S L, Bai J J, et al. Design of absorptive/transmissive frequency-selective surface based on parallel resonance [J]. IEEE Transactions on Antennas and Propagation. 2017, 65(9): 4897-4902.

【32】Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties [J]. IEEE Transactions on Antennas and Propagation. 2012, 60(6): 2740-2747.

【33】Zhong S M, Wu L J, Liu T J, et al. Transparent transmission-selective radar-infrared bi-stealth structure [J]. Optics Express. 2018, 26(13): 16466-16476.

【34】Li F F, Fang W, Chen P, et al. Transmission and radar cross-section reduction by combining binary coding metasurface and frequency selective surface [J]. Optics Express. 2018, 26(26): 33878-33887.

【35】Huang C, Ji C, Wu X Y, et al. Combining FSS and EBG surfaces for high-efficiency transmission and low-scattering properties [J]. IEEE Transactions on Antennas and Propagation. 2018, 66(3): 1628-1632.

【36】Yue W S, Wang Z H, Yang Y, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing [J]. Plasmonics. 2016, 11(6): 1557-1563.

【37】Ding F, Cui Y X, Ge X C, et al. Ultra-broadband microwave metamaterial absorber [J]. Applied Physics Letters. 2012, 100(10): 103506.

【38】Long C, Yin S, Wang W, et al. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode [J]. Scientific Reports. 2016, 6: 21431.

引用该论文

Li Lixia,Li Rongqiang,Wang Biao,Deng Tao,Han Tiancheng. Design of Transmission-Absorption-Integrated Electromagnetic Window with Flexibility and Ultrathin Thickness[J]. Acta Optica Sinica, 2019, 39(12): 1223005

李莉霞,李荣强,王彪,邓涛,韩天成. 柔性超薄吸透一体化电磁窗结构设计[J]. 光学学报, 2019, 39(12): 1223005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF