首页 > 论文 > 中国光学 > 13卷 > 5期(pp:1032-1043)

基于近红外超连续激光光谱的水稻种子活力无损分级检测研究

Nondestructive grading test of rice seed activity using near infrared super-continuum laser spectrum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对目前农业种植选种应用对于带稃壳水稻种子活力分级检测的迫切需求,以及现有通用的糙米检测技术存在的问题,本文提出一种基于近红外超连续激光光谱的水稻种子活力透射光谱检测方法。首先,设计了种子活力近红外吸收光谱检测系统,测量了3种不同年份的带稃壳的水稻种子的近红外吸收光谱,结果显示,水稻种子的活力梯度与近红外吸收光谱的特征吸收峰值相关。然后,采用归一化、二阶导数校正法和正交信号校正相结合优化了种子光谱的预处理算法。最后,建立主成分分析(PCA)模型,对光谱进行降维,确定最佳主成分数目,应用偏最小二乘判别分析(PLS-DA)建立了水稻种子活力分析鉴别模型。分析结果表明,本文设计的透射式吸收光谱检测系统结合PLS-DA判别模型可对不同活力的水稻种子进行分类,校正集和验证集的准确率分别为94.44%和95.92%,筛选后水稻种子的发芽率可达97.17%。研究结果表明,本文提出的基于近红外光谱信息实现水稻种子活力无损分级的方法可行,且具有较高的预测精度。

Abstract

In view of the urgent need for seed selection technology in agriculture and for grading detection of the vigor of three different years of unpeeled rice seeds, we proposed a new method of detecting the vigor of rice seeds based on near-infrared super-continuous laser spectrum to overcome the significant issues in pre-existing universal brown rice detection technology. Firstly, we design a near-infrared absorption spectroscopy system with which we detect seed viability and measure the NIR spectra of three different years of unpeeled rice seeds. The results show that the activity gradient of the rice seeds is correlated with the characteristic absorption peak of their NIR absorption spectrum. Then, the spectrum of seed is optimized with a pretreatment algorithm of normalization, second derivative correction and orthogonal signal correction. Finally, a Principal Component Analysis (PCA) model is established to reduce the dimension of the spectrum and determine the optimal number of principal components. A Partial Least Squares Discriminant Analysis (PLS-DA) model is established. The analysis results show that the transmission absorption spectrum detection system designed in this paper combined with the PLS-DA discrimination model can classify rice seeds of different vigor with an accuracy of 94.44% and 95.92%. After screening, the germination rate of rice seeds can reach 97.17%. The results show that it is feasible to achieve non-destructive classification of rice seed activity using near-infrared spectroscopy with high accuracy.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:O433.1

DOI:10.37188/CO.2020-0027

所属栏目:原创文章

基金项目:|Supported by Hunan Agricultural Science and Technology Innovation Fund Project (No. 2018NK1020); National Natural Science Foundation of China (No. 61627819, No.61805239, No. 61727818); Jilin Province Science and Technology Development Plan (No. 20190303063SF, No. 20180201024GX, No.20150520101JH); Foundation of Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2018254)

收稿日期:2020-02-24

修改稿日期:--

网络出版日期:2020-11-16

作者单位    点击查看

金文玲:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033;中国科学院大学,北京 100049
曹乃亮:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
朱明东:湖南省水稻研究所,湖南 长沙 410125
陈伟:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
张佩光:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
赵庆磊:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
梁静秋:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
余应弘:湖南省农业科学院,湖南 长沙 410125
吕金光:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
阚瑞峰:中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033

联系人作者:吕金光(); 阚瑞峰();

备注:|Supported by Hunan Agricultural Science and Technology Innovation Fund Project (No. 2018NK1020); National Natural Science Foundation of China (No. 61627819, No.61805239, No. 61727818); Jilin Province Science and Technology Development Plan (No. 20190303063SF, No. 20180201024GX, No.20150520101JH); Foundation of Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2018254)

【1】杨振发, 肖航, 张雷, ZH F YANG, H XIAO and L ZHANG. Rapid determination of oxides content in cement raw meal based on near infrared spectroscopy. Chinese Journal of Analytical Chemistry. 48(2), 275-281(2020).

【2】A AMBROSE, S LOHUMI and W H LEE. Comparative nondestructive measurement of corn seed viability using fourier transform near-infrared (FT-NIR) and raman spectroscopy. Sensors and Actuators B: Chemical. 224, 500-506(2015).

【3】李茂刚, 闫春华, 薛佳, M G LI, CH H YAN and J XUE. Rapid quantitative analysis of methanol content in methanol gasoline by near infrared spectroscopy coupled with wavelet transform-random forest. Chinese Journal of Analytical Chemistry. 47(12), 1995-2003(2019).

【4】何龙生. 水稻种子活力测定方法的初步研究[D]. 杭州: 浙江农林大学, 2018: 12.HE L SH. The preliminary study on methods f determination of rice seed vig[D]. Hangzhou: Zhejiang A&F University, 2018. (in Chinese)

【5】王岳含. 我国种子质量可追溯系统研究[D]. 北京: 中国农业科学院, 2016.WANG Y H. Seed quality tracing system of china research[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)

【6】牟致远 and ZH Y MU. Seedling vigor and genetic analysis in wheat varieties. Journal of Southwest Agricultural University. 9(4), 421-425(1987).

【7】王青峰, 宫庆友, 沈凌云, Q F WANG, Q Y GONG and L Y SHEN. Study of combining ability of seed vigor in super sweet corn. Seed. 26(6), 4-7(2007).

【8】朱银, 颜伟, 杨欣, Y ZHU, W YAN and X YANG. Test of germination rate of wheat seeds based on near infrared spectroscopy. Jiangsu Agricultural Sciences. 43(12), 111-113(2015).

【9】李欢欢, 卢伟, 杜昌文, H H LI, W LU and CH W DU. Study on rapid and non-destructive detection of rice seed vigor based on photoacoustic spectroscopy combined with LS-SVR. Chinese Journal of Lasers. 42(11), (2015).

【10】李美凌, 邓飞, 刘颖, M L LI, F DENG and Y LIU. Study on detection technology of rice seed vigor based on hyperspectral image. Acta Agriculturae Zhejiangensis. 27(1), 1-6(2015).

【11】宋乐, 王琦, 王纯阳, L SONG, Q WANG and CH Y WANG. Qualitative analysis of single rice seed vigor using near infrared reflectance spectroscopy. Grain Storage. 44(1), 20-23(2015).

【12】X B ZHOU, J W ZHAO and M J W POVEY. Variables selection methods in near-infrared spectroscopy. Analytica Chimica Acta. 667(1-2), 14-32(2010).

【13】史永刚, 栗斌, 田高友, 等. 化学计量学方法及MATLAB实现[M]. 北京: 中国石化出版社, 2010.SHI Y G, LI B, TIAN G Y, et al.. Chemometrics Method MATLAB Implementation[M]. Beijing: China Petrochemical Press, 2010. (in Chinese)

【14】郭帅, 苏杭, 黄星灿, SH GUO, H SU and X C HUANG. Research progress in optical methods for noninvasive blood glucose detection. Chinese Optics. 12(6), 1235-1248(2019).

【15】王纯阳. 基于近红外光谱的单籽粒水稻种子品质检测的方法研究[D]. 合肥: 中国科学技术大学, 2017.WANG CH Y. The nondestructive quality analysis of single rice seed using near infrared spectroscopy[D]. Hefei: University of Science Technology of China. (in Chinese)

【16】高升, 王巧华, 李庆旭, SH GAO, Q H WANG and Q X LI. Non-destructive detection of vitamin C, sugar content and total acidity of red globe grape based on near-infrared spectroscopy. Chinese Journal of Analytical Chemistry. 47(6), 941-949(2019).

【17】付丹丹, 王巧华, 高升, D D FU, Q H WANG and SH GAO. Analysis of S-Ovalbumin content of different varieties of eggs during storage and its nondestructive testing model by visible-near infrared spectroscopy. Chinese Journal of Analytical Chemistry. 48(2), 289-297(2020).

【18】刘宁武, 许林广, 周胜, N W LIU, G L XU and SH ZHOU. Application of quantum-cascade laser spectroscopy to soil ecosystems. Acta Optica Sinica. 39(11), (2019).

【19】谢臣瑜, 翟文超, 李健军, CH Y XIE, W CH ZHAI and J J LI. System-level spectral responsivity calibration comparison and validation of supercontinuum laser and monochromator. Infrared and Laser Engineering. 49(2), (2020).

【20】曹栋栋, 阮晓丽, 詹艳, D D CAO, X L RUAN and Y ZHAN. Relativity analysis between seedling percentage in field and different seed vigor testing methods of hybrid rice seeds. Acta Agriculturae Zhejiangensis. 26(5), 1145-1150(2014).

【21】刘燕德, 叶灵玉, 孙旭东, Y D LIU, L Y YE and X D SUN. Maturity evaluation model of tangerine based on spectral index. Chinese Optics. 11(1), 83-91(2018).

【22】董盈红 and Y H DONG. Identification of rapeseed by fourier transform infrared spectroscopy. Journal of Baoshan Teachers College. 37(2), 38-41(2018).

【23】褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京: 化学工业出版社, 2011.CHU X L. Molecular Spectroscopy Analytical Technology Combined with Chemometrics Its Applications[M]. Beijing: Chemical Industry Press, 2011. (in Chinese)

【24】王昕, 吕世龙, 李岩, X WANG, SH L LV and Y LI. Automatic baseline correction of gas spectra based on baseline drift model. Spectroscopy and Spectral Analysis. 38(12), 3946-3951(2018).

【25】王凡, 李永玉, 彭彦昆, F WANG, Y Y LI and Y K PENG. Nondestructive determination of lycopene content based on visible/near infrared transmission spectrum. Chinese Journal of Analytical Chemistry. 46(9), 1424-1431(2018).

【26】高升, 王巧华, 付丹丹, SH GAO, Q H WANG and D D FU. Nondestructive detection of sugar content and firmness of red globe grape by hyperspectral imaging. Acta Optica Sinica. 39(10), 355-364(2019).

【27】范雪婷, 朱明东, 杨晨光, X T FAN, M D ZHU and CH G YANG. Assessment of rice seed vigor using near infrared spectroscopy. Hybrid Rice. 34(4), 62-67(2019).

【28】P S SAMPAIO, A SOARES and A CASTANHO. Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chemistry. 242, 196-204(2018).

【29】D L LIU, Y X WU and Z M GAO. Comparative non-destructive classification of partial waxy wheats using near-infrared and raman spectroscopy. Crop & Pasture Science. 70(5), 437-441(2019).

引用该论文

Wen-ling JIN,Nai-liang CAO,Ming-dong ZHU,Wei CHEN,Pei-guang ZHANG,Qing-lei ZHAO,Jing-qiu LIANG,Ying-hong YU,Jin-guang LV,Rui-feng KAN. Nondestructive grading test of rice seed activity using near infrared super-continuum laser spectrum[J]. Chinese Optics, 2020, 13(5): 1032-1043

金文玲,曹乃亮,朱明东,陈伟,张佩光,赵庆磊,梁静秋,余应弘,吕金光,阚瑞峰. 基于近红外超连续激光光谱的水稻种子活力无损分级检测研究[J]. 中国光学, 2020, 13(5): 1032-1043

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF