首页 > 论文 > Photonics Research > 8卷 > 7期(pp:1253-1259)

Portable quantitative phase microscope for material metrology and biological imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Quantitative phase microscopy (QPM) has emerged as an important tool for material metrology and biological imaging. For broader adoption in those applications, we have proposed and demonstrated a new portable off-axis QPM method, which works in both transmission and reflection modes to meet different sample measurement requirements. The temporal and spatial sensitivities of our system, as quantified by optical path-length difference values, are 0.65 nm and 1.04 nm, respectively. To demonstrate its applicability for a wide range of applications, we deployed our system for profiling transistor gold electrode samples, observing red blood cell membrane fluctuations, imaging living cells flowing in a microfluidic chip, etc. Our portable QPM system has a low-cost design and involves a simple and robust phase-retrieval algorithm that we envision will allow for broader deployment at different environmental settings, including in resource-limited sites and integration with other metrology or imaging modalities.

中国激光微信矩阵
补充资料

DOI:10.1364/PRJ.396135

所属栏目:Imaging Systems, Microscopy, and Displays

基金项目:Croucher Foundation10.13039/501100001692; The Chinese University of Hong Kong Direct Research Grant; Shun Hing Institute of Advanced Engineering10.13039/501100006355; Innovation and Technology Commission - Hong Kong10.13039/501100010428;

收稿日期:2020-04-24

录用日期:2020-06-04

网络出版日期:2020-06-04

作者单位    点击查看

Mengxuan Niu:Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Gang Luo:Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Xin Shu:Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Fuyang Qu:Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Shuang Zhou:Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Yi-Ping Ho:Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Ni Zhao:Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Renjie Zhou:Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China

联系人作者:Renjie Zhou(rjzhou@cuhk.edu.hk)

备注:Croucher Foundation10.13039/501100001692; The Chinese University of Hong Kong Direct Research Grant; Shun Hing Institute of Advanced Engineering10.13039/501100006355; Innovation and Technology Commission - Hong Kong10.13039/501100010428;

【1】G. PopescuG. Popescu. Quantitative Phase Imaging of Cells and Tissues. : McGraw-Hill, (2011).

【2】Y. Park, C. Depeursinge and G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics. 12, 578-589(2018).

【3】E. Cuche, F. Bevilacqua and C. Depeursinge. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24, 291-293(1999).

【4】C. Edwards, R. J. Zhou, S. W. Hwang, S. J. McKeown, K. Y. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard and G. Popescu. Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited]. Appl. Opt. 53, G33-G43(2014).

【5】P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb and C. Depeursinge. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468-470(2005).

【6】C. Edwards, A. Arbabi, G. Popescu and L. L. Goddard. Optically monitoring and controlling nanoscale topography during semiconductor etching. Light Sci. Appl. 1, (2012).

【7】K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park and Y. Park. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors. 13, 4170-4191(2013).

【8】H. Majeed, S. Sridharan, M. Mir, L. H. Ma, E. Min, W. Jung and G. Popescu. Quantitative phase imaging for medical diagnosis. J. Biophoton. 10, 177-205(2017).

【9】F. Charriere, J. Kuhn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet and C. Depeursinge. Characterization of microlenses by digital holographic microscopy. Appl. Opt. 45, 829-835(2006).

【10】R. J. Zhou, C. Edwards, A. Arbabi, G. Popescu and L. L. Goddard. Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy. Nano Lett. 13, 3716-3721(2013).

【11】J. K. Wallace, S. Rider, E. Serabyn, J. Kuhn, K. Liewer, J. Deming, G. Showalter, C. Lindensmith and J. Nadeau. Robust, compact implementation of an off-axis digital holographic microscope. Opt. Express. 23, 17367-17378(2015).

【12】M. Bedrossian, C. Lindensmith and J. L. Nadeau. Digital holographic microscopy, a method for detection of microorganisms in plume samples from Enceladus and other icy worlds. Astrobiology. 17, 913-925(2017).

【13】N. T. ShakedN. T. Shaked. Quantitative phase microscopy of biological samples using a portable interferometer. Opt. Lett. 37, 2016-2018(2012).

【14】P. Girshovitz and N. T. Shaked. Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy. Opt. Express. 21, 5701-5714(2013).

【15】K. Lee and Y. Park. Quantitative phase imaging unit. Opt. Lett. 39, 3630-3633(2014).

【16】J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D. J. Kim and Y. Park. Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging. Sci. Rep. 6, (2016).

【17】A. Greenbaum, Y. B. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri and A. Ozcan. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 6, (2014).

【18】A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali and A. Ozcan. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods. 9, 889-895(2012).

【19】X. Ou, R. Horstmeyer, C. Yang and G. Zheng. Quantitative phase imaging via Fourier ptychographic microscopy. Opt. Lett. 38, 4845-4848(2013).

【20】G. Zheng, R. Horstmeyer and C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics. 7, 739-745(2013).

【21】S. W. Jiang, J. K. Zhu, P. M. Song, C. F. Guo, Z. C. Bian, R. H. Wang, Y. K. Huang, S. Y. Wang, H. Zhang and G. A. Zheng. Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip. 20, 1058-1065(2020).

【22】X. Meng, H. C. Huang, K. D. Yan, X. L. Tian, W. Yu, H. Y. Cui, Y. Kong, L. Xue, C. Liu and S. Y. Wang. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method. Lab Chip. 17, 104-109(2017).

【23】G. Popescu, T. Ikeda, R. R. Dasari and M. S. Feld. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775-777(2006).

【24】B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard and G. Popescu. Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. Opt. Photon. 6, 57-119(2014).

【25】C. Zheng, R. J. Zhou, C. F. Kuang, G. Y. Zhao, Z. M. Zhang and X. Liu. Diffraction phase microscopy realized with an automatic digital pinhole. Opt. Commun. 404, 5-10(2017).

【26】H. Pham, H. F. Ding, N. Sobh, M. Do, S. Patel and G. Popescu. Off-axis quantitative phase imaging processing using CUDA: toward real-time applications. Biomed. Opt. Express. 2, 1781-1793(2011).

【27】P. Hosseini, R. J. Zhou, Y. H. Kim, C. Peres, A. Diaspro, C. F. Kuang, Z. Yaqoob and P. T. C. So. Pushing phase and amplitude sensitivity limits in interferometric microscopy. Opt. Lett. 41, 1656-1659(2016).

【28】M. T. Postek, A. Vladar, B. Ming and B. Benjamin. Documentation for reference material (RM) 8820: a versatile, multipurpose dimensional metrology calibration standard for scanned particle beam, scanned probe and optical microscopy. (2014).

【29】Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld and S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 105, 13730-13735(2008).

【30】Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine and G. Popescu. Measurement of red blood cell mechanics during morphological changes. Proc. Natl. Acad. Sci. USA. 107, 6731-6736(2010).

【31】G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld and K. Badizadegan. Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cell Mol. Dis. 41, 10-16(2008).

【32】C. Q. Yi, C. W. Li, S. L. Ji and M. S. Yang. Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta. 560, 1-23(2006).

【33】K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. Lee, Y. Z. Luo, K. Hashimoto, T. Ito, M. Hase, J. W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino and K. Goda. High-throughput label-free molecular fingerprinting flow cytometry. Sci. Adv. 5, (2019).

【34】D. Jin, Y. J. Sung, N. Lue, Y. H. Kim, P. T. C. So and Z. Yaqoob. Large population cell characterization using quantitative phase cytometer. Cytometry A. 91A, 450-459(2017).

【35】F. Feijo Delgado, N. Cermak, V. C. Hecht, S. Son, Y. Li, S. M. Knudsen, S. Olcum, J. M. Higgins, J. Chen, W. H. Grover and S. R. Manalis. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells. PLoS ONE. 8, (2013).

【36】O. Bar-Nur, M. F. M. Gerli, B. Di Stefano, A. E. Almada, A. Galvin, A. Coffey, A. J. Huebner, P. Feige, C. Verheul, P. Cheung, D. Payzin-Dogru, S. Paisant, A. Anselmo, R. I. Sadreyev, H. C. Ott, S. Tajbakhsh, M. A. Rudnicki, A. J. Wagers and K. Hochedlinger. Direct reprogramming of mouse fibroblasts into functional skeletal muscle progenitors. Stem Cell Rep. 10, 1505-1521(2018).

【37】W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins and S. R. Manalis. Measuring single-cell density. Proc. Natl. Acad. Sci. USA. 108, 10992-10996(2011).

引用该论文

Mengxuan Niu, Gang Luo, Xin Shu, Fuyang Qu, Shuang Zhou, Yi-Ping Ho, Ni Zhao, and Renjie Zhou, "Portable quantitative phase microscope for material metrology and biological imaging," Photonics Research 8(7), 1253-1259 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF