首页 > 论文 > 光学学报 > 40卷 > 6期(pp:0605001--1)

双波段多层衍射光学元件的基底材料选择方法研究及其在变焦系统中的应用

Substrate Material Selection Method for Dual-Band Multilayer Diffractive Optical Elements and Its Application in the Zoom System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于双波段系统的多层衍射光学元件(MLDOE)的带宽积分衍射效率(PIDE),建立其与入射角度和基底材料关系的数学模型,提出一种双波段斜入射多层衍射光学元件基底材料的选择方法,并通过该方法选择出双波段多层衍射光学元件基底材料的最佳组合方案。方法的提出以及数学模型的建立,解决了光线斜入射时基底材料选择不当导致多层衍射元件衍射效率和带宽积分衍射效率下降的问题,为多层衍射元件在多波段和宽波段系统中的应用提供理论指导。依据该方法,设计了适用于中波红外3.7~4.8 μm(MWIR)和长波红外7.7~9.5 μm(LWIR) 双波段的多层衍射光学元件,并利用该衍射元件设计了10倍中长波折衍混合双波段红外变焦系统。结果表明,该系统在中波红外奈奎斯特频率处的调制传递函数(MTF)均大于0.52,在长波红外奈奎斯特频率处的MTF均大于0.35。

Abstract

In this study, a mathematical model of the relationship between the bandwidth integral diffraction efficiency (PIDE) and the incident angle with the substrate material of a multilayer diffractive optical element (MLDOE) for a two-band system is established. A method for selecting a double-band oblique incident MLDOE substrate material is proposed; this method selects the best base material combination of the dual-band MLDOE. The proposed method and the mathematical model solve the problem in which the improper selection of the substrate material leads to a decrease in the diffraction efficiency and bandwidth integral diffraction efficiency of the MLDOE when light is obliquely incident. In addition, the method provides theoretical guidance for the application of MLDOE in multi-band and wide-band systems. According to the method, an MLDOE suitable for a medium wave infrared (MWIR) of 3.7-4.8 μm and a long wave infrared (LWIR) of 7.7-9.5 μm is designed, and a 10× hybrid zoom lens is designed using the diffraction element for the dual-band. The results show that the modulation transfer function (MTF) of the system at the Nyquist frequency of the MWIR is greater than 0.52 and the MTF at the Nyquist frequency of the LWIR is greater than 0.35.

中国激光微信矩阵
补充资料

中图分类号:TH74

DOI:10.3788/AOS202040.0605001

所属栏目:衍射与光栅

基金项目:国家重大科技专项高分专项、吉林省科技厅优秀青年人才基金项目、吉林省教育厅“十三五”科学技术研究项目、长春理工大学青年基金项目;

收稿日期:2019-09-30

修改稿日期:2019-12-05

网络出版日期:2020-03-01

作者单位    点击查看

张博:长春理工大学光电工程学院, 吉林 长春 130022
崔庆丰:长春理工大学光电工程学院, 吉林 长春 130022
朴明旭:长春理工大学光电工程学院, 吉林 长春 130022
胡洋:长春理工大学光电工程学院, 吉林 长春 130022
孙林:长春理工大学光电工程学院, 吉林 长春 130022

联系人作者:崔庆丰(qf_cui@163.com)

备注:国家重大科技专项高分专项、吉林省科技厅优秀青年人才基金项目、吉林省教育厅“十三五”科学技术研究项目、长春理工大学青年基金项目;

【1】Fan C J, Zhao Y H, Ying C F, et al. Multilayer diffraction element with wide field of view and high diffractive efficiency [J]. Chinese Journal of Lasers. 2012, 39(5): 0516001.
范长江, 赵亚辉, 应朝福, 等. 宽光谱大视场角的高衍射效率多层衍射元件 [J]. 中国激光. 2012, 39(5): 0516001.

【2】Mao W F, Zhang X, Qu H M, et al. Broad dual-band kinoform infrared double-layer diffractive optical system design [J]. Acta Optica Sinica. 2014, 34(10): 1022002.
毛文峰, 张新, 曲贺盟, 等. 红外双色宽波段高衍射效率衍射光学系统设计 [J]. 光学学报. 2014, 34(10): 1022002.

【3】Zhang B, Cui Q F, Xue C X, et al. Achromatism about negative refractive index lens [J]. Acta Photonica Sinica. 2015, 44(3): 0312004.
张博, 崔庆丰, 薛常喜, 等. 负折射率材料透镜的消色差 [J]. 光子学报. 2015, 44(3): 0312004.

【4】Nevo Y. Dual-band optics [J]. Optical Engineering. 2013, 52(5): 053002.

【5】Dong K Y, Zhang L G, Wang J, et al. Design of the infrared dual-band athermalized optical system based on HDE [J]. Proceedings of SPIE. 2009, 7383: 73831B.

【6】Chen H D, Xue C X. Design of mid-wave infrared optical system with high variable ratio miniaturization [J]. Acta Optica Sinica. 2020, 40(2): 0222001.
陈虹达, 薛常喜. 高变倍比小型化的中波红外光学系统设计 [J]. 光学学报. 2020, 40(2): 0222001.

【7】Mao S, Cui Q F, Piao M X, et al. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle [J]. Applied Optics. 2016, 55(13): 3549-3354.

【8】Yang H F, Xue C X, Li C, et al. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements [J]. Applied Optics. 2016, 55(25): 7126-7133.

【9】Sweeney D W, Sommargren G E. Harmonic diffractive lenses [J]. Applied Optics. 1995, 34(14): 2469-2475.

【10】Swanson G J. Binary optics technology: the theory and design of multi-level diffractive optical elements[R] . Lexington: MIT Lincoln Laboratory Technical Report. 1989, 54.

【11】Buralli D A, Morris G M. Effects of diffraction efficiency on the modulation transfer function of diffractive lenses [J]. Applied Optics. 1992, 31(22): 4389-4396.

【12】Xue C X, Cui Q F, Pan C Y, et al. Design of multi-layer diffractive optical element with bandwidth integral average diffraction efficiency [J]. Acta Optica Sinica. 2010, 30(10): 3016-3020.
薛常喜, 崔庆丰, 潘春艳, 等. 基于带宽积分平均衍射效率的多层衍射光学元件设计 [J]. 光学学报. 2010, 30(10): 3016-3020.

【13】Mao S, Cui Q F. Effecton polychromatic integral diffraction efficiency for two-layer diffractive optics [J]. Acta Optica Sinica. 2016, 36(1): 0105001.
毛珊, 崔庆丰. 双层衍射元件加工误差对带宽积分平均衍射效率的影响 [J]. 光学学报. 2016, 36(1): 0105001.

【14】Riedl M J. Opticaldesign fundamentals for infrared systems[M]. Bellingham: , 2001.

【15】Guimond Y, Bellec Y, Rogers K. A new moldable infrared glass for thermal imaging and low cost sensing [J]. Proceedings of SPIE. 2007, 6542: 654225.

【16】Gerard D, Kristy D, Blaise R. Technical consideration for designing low-cost, long-wave infrared objectives [J]. Proceedings of SPIE. 2014, 9070: 907026.

【17】Yang H F, Xue C X, Li C, et al. Optimal design of multilayer diffractive optical elements with effective area method [J]. Applied Optics. 2016, 55(7): 1675-1682.

【18】Wang W S, Mu D, Chen Y. Contemporary optical system design[M]. Beijing: National Defense Industry Press, 2016, 229-232.
王文生, 牟达, 陈宇. 现代光学系统设计[M]. 北京: 国防工业出版社, 2016, 229-232.

【19】Tamagawa Y, Tajime T. Dual-band optical systems with a projective athermal chart: design [J]. Applied Optics. 1997, 36(1): 297-301.

引用该论文

Zhang Bo,Cui Qingfeng,Piao Mingxu,Hu Yang,Sun Lin. Substrate Material Selection Method for Dual-Band Multilayer Diffractive Optical Elements and Its Application in the Zoom System[J]. Acta Optica Sinica, 2020, 40(6): 0605001

张博,崔庆丰,朴明旭,胡洋,孙林. 双波段多层衍射光学元件的基底材料选择方法研究及其在变焦系统中的应用[J]. 光学学报, 2020, 40(6): 0605001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF