首页 > 论文 > 激光与光电子学进展 > 57卷 > 11期(pp:111406--1)

飞秒激光制备可控微纳米结构表面及应用研究 (特邀综述)

Controllable Micro/Nano Structure Surface Fabricated by Femtosecond Laser and Its Applications (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

飞秒激光直写技术相比于传统加工方式以及其他先进的微纳米加工手段在可控微纳米结构加工方面具有一定的优势,如无需掩模、适合任意材料、热效应小等,因此被用来制备多样化的仿生微纳米结构表面,开发各种领域的应用,如自清洁、油水分离、水雾收集等。分析了利用飞秒激光在不同材料上制备多样微纳米结构的形成机理和设计思路,总结了国内外有关通过飞秒激光制备仿生微纳米表面的最新研究进展,并从表面润湿性的相关概念及理论模型、飞秒激光可控制备多样微纳米结构以及相关工业生活应用等方面进行了探索研究。最后分析了目前飞秒激光加工技术在微纳米制造领域存在的困难和挑战,并对未来其在相关领域的发展进行了展望。

Abstract

Compared to traditional processing methods and other advanced micro/nano processing methods, femtosecond laser direct writing technology has certain advantages in controllable micro/nano processing, such as no mask, suitable for any material, and small thermal effect. Therefore, it is always used to prepare bionic micro/nano structure surfaces for applications in various fields such as self-cleaning, oil-water separation, and water mist collection. The formation mechanism and design ideas of preparing various micro/nano structures on different materials by femtosecond lasers are analyzed, and the latest research progress on the preparation of the bionic micro/nano structure surfaces by femtosecond laser is summarized. Then, the related concepts and theoretical models of surface wettability, controllable preparation of various micro/nano structures by femtosecond laser, and related industrial applications are explored. Finally, the difficulties and challenges of femtosecond laser processing technology in the field of micro/nano manufacturing are analyzed, and its future development in related fields is prospected.

广告组5 - 光束分析仪
补充资料

中图分类号:TN249

DOI:10.3788/LOP57.111406

所属栏目:“超快激光加工”专题—穷理探幽基础篇

基金项目:国家自然科学基金、中央大学基础研究经费、国家重点研发项目、中国博士后科学基金、江苏省自然科学基金、安徽省高校优秀青年骨干人才国内外访学研修项目;

收稿日期:2020-03-18

修改稿日期:2020-03-23

网络出版日期:2020-06-01

作者单位    点击查看

边玉成:中国科学技术大学微电子学院, 安徽 合肥 230026中国科学技术大学微纳研究与制造中心, 安徽 合肥 230026
王宇龙:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
肖轶:南通职业大学机械工程学院, 江苏 南通 226007
张迎辉:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
焦云龙:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
吴东:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
周成刚:中国科学技术大学微电子学院, 安徽 合肥 230026中国科学技术大学微纳研究与制造中心, 安徽 合肥 230026
姚成立:合肥师范学院化学与化学工程学院, 安徽 合肥 230601

联系人作者:边玉成(bianyc@mail.ustc.edu.cn); 肖轶(SY052@mail.ustc.edu.cn); 焦云龙(jyljjw@ustc.edu.cn);

备注:国家自然科学基金、中央大学基础研究经费、国家重点研发项目、中国博士后科学基金、江苏省自然科学基金、安徽省高校优秀青年骨干人才国内外访学研修项目;

【1】Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta. 1997, 202(1): 1-8.

【2】Bohn H F, Federle W. Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface [J]. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101(39): 14138-14143.

【3】Autumn K. LiangY A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair [J]. Nature. 2000, 405(6787): 681-685.

【4】Parker A R, Lawrence C R. Water capture by a desert beetle [J]. Nature. 2001, 414(6859): 33-34.

【5】Liu M J, Wang S T, Wei Z X, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface [J]. Advanced Materials. 2009, 21(6): 665-669.

【6】Srinivasarao M. Nano-optics in the biological world: beetles, butterflies, birds, and moths [J]. Chemical Reviews. 1999, 99(7): 1935-1962.

【7】Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings [J]. Soft Matter. 2007, 3(2): 178-182.

【8】Zhang M Q, Feng S L, Wang L, et al. Lotus effect in wetting and self-cleaning [J]. Biotribology. 2016, 5: 31-43.

【9】Ma Q L, Cheng H F, Fane A G, et al. Recent development of advanced materials with special wettability for selective oil/water separation [J]. Small. 2016, 12(16): 2186-2202.

【10】Zhang S N, Huang J Y, Cheng Y, et al. Bioinspired surfaces with superwettability for anti-icing and ice-phobic application: concept, mechanism, and design [J]. Small. 2017, 13(48): 1701867.

【11】Zhang S N, Huang J Y, Chen Z, et al. Bioinspired special wettability surfaces: from fundamental research to water harvesting applications [J]. Small. 2017, 13(3): 1602992.

【12】Shiu J Y, Kuo C W, Chen P L, et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography [J]. Chemistry of Materials. 2004, 16(4): 561-564.

【13】Shirtcliffe N J. McHale G, Newton M I, et al. Intrinsically superhydrophobic organosilica sol-gel foams [J]. Langmuir. 2003, 19(14): 5626-5631.

【14】Fiorilli S, Rivolo P, Descrovi E, et al. Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates [J]. Journal of Colloid and Interface Science. 2008, 321(1): 235-241.

【15】Darmanin T, Nicolas M, Guittard F. Electrodeposited polymer films with both superhydrophobicity and superoleophilicity [J]. Physical Chemistry Chemical Physics. 2008, 10(29): 4322-4326.

【16】Guo C W, Feng L, Zhai J, et al. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer [J]. ChemPhysChem. 2004, 5(5): 750-753.

【17】Love J C, Gates B D, Wolfe D B, et al. Fabrication and wetting properties of metallic half-shells with submicron diameters [J]. Nano Letters. 2002, 2(8): 891-894.

【18】Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry [J]. Journal of the American Chemical Society. 2016, 138(6): 1727-1748.

【19】Li S H, Huang J Y, Chen Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications [J]. Journal of Materials Chemistry A. 2017, 5(1): 31-55.

【20】Jeevahan J, Chandrasekaran M, Britto Joseph G, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges [J]. Journal of Coatings Technology and Research. 2018, 15(2): 231-250.

【21】Bonse J, Baudach S, Krüger J, et al. Femtosecond laser ablation of silicon-modification thresholds and morphology [J]. Applied Physics A. 2002, 74(1): 19-25.

【22】Venkatakrishnan K, Tan B. Ngoi B K A. Femtosecond pulsed laser ablation of thin gold film [J]. Optics & Laser Technology. 2002, 34(3): 199-202.

【23】Vorobyev A Y, Guo C L. Femtosecond laser structuring of titanium implants [J]. Applied Surface Science. 2007, 253(17): 7272-7280.

【24】Womack M, Vendan M, Molian P. Femtosecond pulsed laser ablation and deposition of thin films of polytetrafluoroethylene [J]. Applied Surface Science. 2004, 221(1/2/3/4): 99-109.

【25】Yong J, Chen F, Huo J, et al. Green, biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation [J]. ACS Omega. 2018, 3(2): 1395-1402.

【26】Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials [J]. Nature Photonics. 2008, 2(4): 219-225.

【27】Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications [J]. Laser & Photonics Reviews. 2013, 7(3): 385-407.

【28】Juodkazis S, Watanabe M, et al. Femtosecond laser-assisted three-dimensional microfabrication in silica [J]. Optics Letters. 2001, 26(5): 277-279.

【29】Martinez A, Dubov M, Khrushchev I, et al. Direct writing of fibre Bragg gratings by femtosecond laser [J]. Electronics Letters. 2004, 40(19): 1170-1172.

【30】Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses [J]. Journal of Applied Physics. 2015, 117(3): 033103.

【31】Ahmmed K, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining [J]. Micromachines. 2014, 5(4): 1219-1253.

【32】Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces [J]. Soft Matter. 2015, 11(46): 8897-8906.

【33】Yong J L, Chen F, Yang Q, et al. Hall of fame article: a review of femtosecond-laser-induced underwater superoleophobic surfaces [J]. Advanced Materials Interfaces. 2018, 5(7): 1870033.

【34】Zhang J Z, Chen F, Yong J L, et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser [J]. Laser & Optoelectronics Progress. 2018, 55(11): 110001.
张径舟, 陈烽, 雍佳乐, 等. 飞秒激光诱导仿生超疏水材料表面的研究进展 [J]. 激光与光电子学进展. 2018, 55(11): 110001.

【35】Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial [J]. Advanced Materials. 2002, 14(24): 1857-1860.

【36】Adam N. The physics and chemistry of surfaces [2020-03-18].https:∥www.researchgate.net/publication/268944813_The_Physics_and_Chemistry_of_Surfaces.[2020-03-18]. 0.

【37】Vogler E A. Structure and reactivity of water at biomaterial surfaces [J]. Advances in Colloid and Interface Science. 1998, 74(1/2/3): 69-117.

【38】Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Industrial & Engineering Chemistry. 1936, 28(8): 988-994.

【39】Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society. 1944, 40: 546-551.

【40】Hansen W R, Autumn K. Evidence for self-cleaning in gecko setae [J]. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102(2): 385-389.

【41】Wang Z K, Zheng H Y, Lim C P, et al. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation [J]. Applied Physics Letters. 2009, 95(11): 111110.

【42】Neinhuis C. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Annals of Botany. 1997, 79(6): 667-677.

【43】Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control to functional application [J]. Journal of Materials Chemistry. 2008, 18(6): 621-633.

【44】Wang S T, Liu K S, Yao X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications [J]. Chemical Reviews. 2015, 115(16): 8230-8293.

【45】Yong J L, Chen F, Li M J, et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces [J]. Journal of Materials Chemistry A. 2017, 5(48): 25249-25257.

【46】Bauer U, Federle W. The insect-trapping rim of Nepenthes pitchers [J]. Plant Signaling & Behavior. 2009, 4(11): 1019-1023.

【47】Bauer U, Bohn H F, Federle W. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar [J]. Proceedings of the Royal Society B: Biological Sciences. 2008, 275(1632): 259-265.

【48】Wong T S, Kang S H. Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature. 2011, 477(7365): 443-447.

【49】Manna U. LynnD M. Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces [J]. Advanced Materials. 2015, 27(19): 3007-3012.

【50】Yong J L, Chen F, Yang Q, et al. Superoleophobic surfaces [J]. Chemical Society Reviews. 2017, 46(14): 4168-4217.

【51】Yang J J. Femtosecond laser "cold" micro-machining and its advanced applications(I) [J]. Laser & Optoelectronics Progress. 2004, 41(4): 39-47.
杨建军. 飞秒激光超精细“冷”加工技术及其应用(续) [J]. 激光与光电子学进展. 2004, 41(4): 39-47.

【52】Shirk M D, Molian P A. A review of ultrashort pulsed laser ablation of materials [J]. Journal of Laser Applications. 1998, 10(1): 18-28.

【53】Nedialkov N N, Atanasov P A, Amoruso S, et al. Laser ablation of metals by femtosecond pulses: theoretical and experimental study [J]. Applied Surface Science. 2007, 253(19): 7761-7766.

【54】Povarnitsyn M E, Itina T E, Sentis M, et al. Material decomposition mechanisms in femtosecond laser interactions with metals [J]. Physical Review B. 2007, 75(23): 235414.

【55】Shinonaga T, Tsukamoto M, Kawa T, et al. Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium [J]. Applied Physics B. 2015, 119(3): 493-496.

【56】Qiao H Z, Wang F, Zhang N, et al. Femtosecond laser fabrication of two-dimensional periodic composite structures on tungsten surface [J]. Chinese Journal of Lasers. 2017, 44(1): 0102010.
乔红贞, 王飞, 张楠, 等. 飞秒激光在钨表面制备二维周期复合结构的研究 [J]. 中国激光. 2017, 44(1): 0102010.

【57】Han Y H, Qu S L. The ripples and nanoparticles on silicon irradiated by femtosecond laser [J]. Chemical Physics Letters. 2010, 495(4/5/6): 241-244.

【58】Liu J K, Jia X, Wu W S, et al. Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse [J]. Optics Express. 2018, 26(5): 6302-6315.

【59】Reif J, Costache F, Henyk M, et al. 2002, 197/198: 891-895.

【60】Müller F, Kunz C, Gr?f S. Bio-inspired functional surfaces based on laser-induced periodic surface structures [J]. Materials. 2016, 9(6): 476.

【61】Shimotsuma Y, Kazansky P G, Qiu J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses [J]. Physical Review Letters. 2003, 91(24): 247405.

【62】Sakabe S, Hashida M, Tokita S, et al. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse [J]. Physical Review B. 2009, 79(3): 033409.

【63】Huang M, Cheng Y, Zhao F L, et al. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale [J]. Annalen Der Physik. 2013, 525(1/2): 74-86.

【64】Jia T Q, Chen H X, Huang M, et al. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses [J]. Physical Review B. 2005, 72(12): 125429.

【65】Florian C, Skoulas E, Puerto D, et al. Controlling the wettability of steel surfaces processed with femtosecond laser pulses [J]. ACS Applied Materials & Interfaces. 2018, 10(42): 36564-36571.

【66】Yin K, Chu D K, Dong X R, et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation [J]. Nanoscale. 2017, 9(37): 14229-14235.

【67】Sun T L, Wang G J, Feng L, et al. Reversible switching between superhydrophilicity and superhydrophobicity [J]. Angewandte Chemie International Edition. 2004, 43(3): 357-360.

【68】Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces [J]. Langmuir. 2003, 19(4): 1249-1253.

【69】Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces [J]. Langmuir. 1996, 12(9): 2125-2127.

【70】Yong J L, Chen F, Yang Q, et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability [J]. Chemical Communications. 2015, 51(48): 9813-9816.

【71】Lu J L, Ngo C V, Singh S C, et al. Bioinspired hierarchical surfaces fabricated by femtosecond laser and hydrothermal method for water harvesting [J]. Langmuir. 2019, 35(9): 3562-3567.

【72】Yang G. Laser ablation in liquids: applications in the synthesis of nanocrystals [J]. Progress in Materials Science. 2007, 52(4): 648-698.

【73】Shen M Y, Crouch C H, Carey J E, et al. Femtosecond laser-induced formation of submicrometer spikes on silicon in water [J]. Applied Physics Letters. 2004, 85(23): 5694-5696.

【74】Li G Q, Zhang Z, Wu P C, et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation [J]. RSC Advances. 2016, 6(44): 37463-37471.

【75】Jiang H B, Liu Y Q, Zhang Y L, et al. Reed leaf-inspired graphene films with anisotropic superhydrophobicity [J]. ACS Applied Materials & Interfaces. 2018, 10(21): 18416-18425.

【76】Yao J, Wang J N, Yu Y H, et al. Biomimetic fabrication and characterization of an artificial rice leaf surface with anisotropic wetting [J]. Chinese Science Bulletin. 2012, 57(20): 2631-2634.

【77】Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata [J]. Nature. 2016, 532(7597): 85-89.

【78】Hancock M J, Sekeroglu K, Demirel M C. Bioinspired directional surfaces for adhesion, wetting, and transport [J]. Advanced Functional Materials. 2012, 22(11): 2223-2234.

【79】Xia D Y, Johnson L M, López G P. Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications [J]. Advanced Materials. 2012, 24(10): 1287-1302.

【80】Liu Y, Wang X W, Fei B, et al. Bioinspired, stimuli-responsive, multifunctional superhydrophobic surface with directional wetting, adhesion, and transport of water [J]. Advanced Functional Materials. 2015, 25(31): 5047-5056.

【81】Vorobyev A Y, Guo C L. Water sprints uphill on glass [J]. Journal of Applied Physics. 2010, 108(12): 123512.

【82】Yong J L, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces [J]. Journal of Materials Chemistry A. 2014, 2(15): 5499-5507.

【83】Lu Y, Yu L D, Zhang Z, et al. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection [J]. RSC Advances. 2017, 7(18): 11170-11179.

【84】Long J Y, Fan P X, Jiang D F, et al. Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures [J]. Advanced Materials Interfaces. 2016, 3(24): 1600641.

【85】Fang Y, Yong J, Chen F, et al. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser [J]. Advanced Materials Interfaces. 2018, 5(6): 1701245.

【86】Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids [J]. Applied Physics A. 1996, 63(2): 109-115.

【87】Li G Q, Fan H, Ren F F, et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration [J]. Journal of Materials Chemistry A. 2016, 4(48): 18832-18840.

【88】Ren F F, Li G Q, Zhang Z, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection [J]. Journal of Materials Chemistry A. 2017, 5(35): 18403-18408.

【89】Zhang Z, Zhang Y H, Fan H, et al. A Janus oil barrel with tapered microhole arrays for spontaneous high-flux spilled oil absorption and storage [J]. Nanoscale. 2017, 9(41): 15796-15803.

【90】Yong J L, Huo J L, Yang Q, et al. Porous network microstructures: femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation [J]. Advanced Materials Interfaces. 2018, 5(7): 1870029.

【91】Zhang Y C, Li Y, Hu Y L, et al. Localized self-growth of reconfigurable architectures induced by a femtosecond laser on a shape-memory polymer [J]. Advanced Materials. 2018, 30(49): 1803072.

【92】Vandenbrink J P, Brown E A, Harmer S L, et al. Turning heads: the biology of solar tracking in sunflower [J]. Plant Science. 2014, 224: 20-26.

【93】Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces [J]. Advanced Materials. 2011, 23(6): 719-734.

【94】Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses [J]. Applied Physics Letters. 2008, 92(4): 041914.

【95】Vorobyev A Y, Guo C L. Femtosecond laser blackening of platinum [J]. Journal of Applied Physics. 2008, 104(5): 053516.

【96】Vorobyev A Y, Makin V S, Guo C L. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources [J]. Physical Review Letters. 2009, 102(23): 234301.

【97】Vorobyev A Y, Guo C L. Direct creation of black silicon using femtosecond laser pulses [J]. Applied Surface Science. 2011, 257(16): 7291-7294.

【98】Vorobyev A Y, Guo C L. Reflection of femtosecond laser light in multipulse ablation of metals [J]. Journal of Applied Physics. 2011, 110(4): 043102.

【99】Vorobyev A Y, Guo C L. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals [J]. Journal of Applied Physics. 2008, 103(4): 043513.

【100】Anatoliy Y, Guo C L. Metal colorization with femtosecond laser pulses [J]. Proceedings of SPIE. 2008, 7005: 70051T.

【101】Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking [J]. Optics Express. 2010, 18(3): 2913-2924.

【102】Li G Q, Li J W, Hu Y L, et al. Femtosecond laser color marking stainless steel surface with different wavelengths [J]. Applied Physics A. 2015, 118(4): 1189-1196.

【103】Li G Q, Li J W, Hu Y L, et al. Realization of diverse displays for multiple color patterns on metal surfaces [J]. Applied Surface Science. 2014, 316: 451-455.

【104】Yin K, Du H F, Luo Z, et al. Multifunctional micro/nano-patterned PTFE near-superamphiphobic surfaces achieved by a femtosecond laser [J]. Surface and Coatings Technology. 2018, 345: 53-60.

【105】Yong J L, Fang Y, Chen F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions [J]. Applied Surface Science. 2016, 389: 1148-1155.

【106】Yu Z W, Yun F F, Wang Y Q, et al. Desert beetle-inspired superwettable patterned surfaces for water harvesting [J]. Small. 2017, 13(36): 1701403.

【107】Kostal E, Stroj S, Kasemann S, et al. Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers [J]. Langmuir. 2018, 34(9): 2933-2941.

【108】Yin K, Yang S, Dong X R, et al. Ultrafast achievement of a superhydrophilic/hydrophobic Janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting [J]. ACS Applied Materials & Interfaces. 2018, 10(37): 31433-31440.

【109】Yong J L, Chen F, Fang Y, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles [J]. ACS Applied Materials & Interfaces. 2017, 9(45): 39863-39871.

【110】Yu C M, Zhu X B, Li K, et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface [J]. Advanced Functional Materials. 2017, 27(29): 1701605.

【111】Jiao Y L, Lv X, Zhang Y Y, et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture [J]. Nanoscale. 2019, 11(3): 1370-1378.

【112】Li G Q, Lu Y, Wu P C, et al. Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation [J]. Journal of Materials Chemistry A. 2015, 3(36): 18675-18683.

【113】Huo J L, Yang Q, Chen F, et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation [J]. Langmuir. 2017, 33(15): 3659-3665.

【114】Yong J L, Yang Q, Chen F, et al. Superoleophobic surfaces: reversible underwater lossless oil droplet transportation [J]. Advanced Materials Interfaces. 2015, 2(2): 1400388.

【115】Yang X L, Choi W T, Liu J Y, et al. Droplet mechanical hand based on anisotropic water adhesion of hydrophobic-superhydrophobic patterned surfaces [J]. Langmuir. 2019, 35(4): 935-942.

【116】Jiao Y L, Li C Z, Lv X, et al. In situ tunable bubble wettability with fast response induced by solution surface tension [J]. Journal of Materials Chemistry A. 2018, 6(42): 20878-20886.

【117】Jiang S J, Hu Y L, Wu H, et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration [J]. Advanced Materials. 2019, 31(15): 1807507.

引用该论文

Bian Yucheng,Wang Yulong,Xiao Yi,Zhang Yinghui,Jiao Yunlong,Wu Dong,Zhou Chenggang,Yao Chengli. Controllable Micro/Nano Structure Surface Fabricated by Femtosecond Laser and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111406

边玉成,王宇龙,肖轶,张迎辉,焦云龙,吴东,周成刚,姚成立. 飞秒激光制备可控微纳米结构表面及应用研究[J]. 激光与光电子学进展, 2020, 57(11): 111406

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF