首页 > 论文 > 光学学报 > 40卷 > 24期(pp:2412001--1)

基于TPLIF技术的光合荧光参数快速准确测量的激发光强自适应方法

Adaptive Method of Excitation Light Intensity Based on TPLIF Technology for Fast and Accurate Measurement of Photosynthetic Fluorescence Parameters

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

首先采用藻类荧光产率模型,以荧光饱和参数Eσ作为饱和激发光强的判断标准,提出了一种激发光强自适应方法,以准确获取不同藻类的光合荧光参数。结果表明,7种藻经自适应调整后可快速而稳定地获得饱和激发光强,调整结果的相对标准偏差均小于2.5%。然后利用激发光强自适应的可变光脉冲诱导荧光(TPLIF)技术测量了7种藻的有效光吸收截面σPSII,并分析了不同门类藻的σPSII差异。最后采用TPLIF技术测量了不同生长时期的小球藻样品,记录了其荧光参数Fv/Fm值和变化趋势,并将其与光合活性分析仪Fast-Ocean的测量结果进行对比,结果发现两者测得的Fv/Fm值保持一致,相关系数为0.9939。本研究为不同生长时期(生长状态差异明显)、不同种类藻光合荧光参数的准确测量提供了有效的饱和激发手段。

Abstract

Based on the model of algae fluorescence yield and with the fluorescence saturation parameter Eσ as the judgment standard of saturated excitation light intensity, we proposed a self-adaptive method of excitation light intensity to accurately acquire the photosynthetic fluorescence parameters of different species of algae. The results show that with the self-adaptive method, the saturated excitation light intensity could be quickly and stably obtained in the seven species of algae, and the relative standard deviations (RSDs) of the adjustment results were all smaller than 2.5%. Furthermore, the effective light absorption cross-sections σPSII of the seven species of algae were measured by the tunable pulse laser induced fluorescence (TPLIF) technique based on the self-adaptive method, and the difference in the σPSII of different species of algae was analyzed. Finally, we measured the Chlorella samples at different growth stages through the TPLIF technique and recorded their fluorescence parameter Fv/Fm and relevant variation trend. It turns out that the recorded results are consistent with the measurement results of the photosynthetic activity analyzer Fast-Ocean, with the correlation coefficient being 0.9939. In conclusion, this study provides an effective way of saturation excitation for accurately measuring the photosynthetic fluorescence parameters of different species of algae at different growth stages (with obvious differences in growth status).

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:X832

DOI:10.3788/AOS202040.2412001

所属栏目:仪器,测量与计量

基金项目:国家重点研发计划 、青岛海洋科学与技术国家实验室开放基金 、国家自然科学基金、安徽省杰出青年科学基金 、中国科学院仪器设备功能开发技术创新项目;

收稿日期:2020-07-31

修改稿日期:2020-09-15

网络出版日期:2020-12-01

作者单位    点击查看

王翔:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
殷高方:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
赵南京:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
甘婷婷:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
覃志松:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031桂林电子科技大学计算机与信息安全学院, 广西 桂林 541004
陈敏:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
华卉:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
董鸣:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
丁志超:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
亓培龙:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
王璐:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
孟德硕:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
刘建国:中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室, 安徽 合肥 230031

联系人作者:殷高方(gfyin@aiofm.ac.cn)

备注:国家重点研发计划 、青岛海洋科学与技术国家实验室开放基金 、国家自然科学基金、安徽省杰出青年科学基金 、中国科学院仪器设备功能开发技术创新项目;

【1】Robinson C, Suggett D J, Cherukuru N, et al. Performance of fast repetition rate fluorometry based estimates of primary productivity in coastal waters [J]. Journal of Marine Systems. 2014, 139: 299-310.

【2】Schuback N. Hoppe C J M, Tremblay J, et al. Primary productivity and the coupling of photosynthetic electron transport and carbon fixation in the Arctic Ocean [J]. Limnology and Oceanography. 2017, 62(3): 898-921.

【3】Pei S F, Laws E A. Does the 14C method estimate net photosynthesis? Implications from batch and continuous culture studies of marine phytoplankton [J]. Deep Sea Research Part I: Oceanographic Research Papers. 2013, 82: 1-9.

【4】Kolber Z, Falkowski P G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ [J]. Limnology and Oceanography. 1993, 38(8): 1646-1665.

【5】Gilbert M, Domin A, Becker A, et al. Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton [J]. Photosynthetica. 2000, 38(1): 111-126.

【6】Kheireddine M, Ouhssain M, Claustre H, et al. Assessing pigment-based phytoplankton community distributions in the Red Sea [J]. Frontiers in Marine Science. 2017, 4: 191.

【7】Brooks M D, Niyogi K K. Use of a pulse-amplitude modulated chlorophyll fluorometer to study the efficiency of photosynthesis in Arabidopsis plants [J]. Chloroplast Research in Arabidopsis. 2011, 775: 299-310.

【8】Fujiki T, Takagi H, Kimoto K, et al. Assessment of algal photosynthesis in planktic foraminifers by fast repetition rate fluorometry [J]. Journal of Plankton Research. 2014, 36(6): 1403-1407.

【9】Suggett D J, Moore C M, Hickman A E, et al. Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state [J]. Marine Ecology Progress Series. 2009, 376: 1-19.

【10】Shi C Y, Zhang Y J, Yin G F, et al. Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement [J]. Acta Photonica Sinica. 2015, 44(2): 0217002.

【11】Shi C Y, Gao X H, Yin G F, et al. Design of phytoplankton photosynthetic parameter measurement system based on variable pulse induced fluorescence [J]. Laser & Optoelectronics Progress. 2016, 53(7): 072301.
石朝毅, 高先和, 殷高方, 等. 基于可变光脉冲诱导荧光的浮游植物光合作用参数测量系统设计 [J]. 激光与光电子学进展. 2016, 53(7): 072301.

【12】Osmond B, Chow W S, Pogson B J, et al. Probing functional and optical cross-sections of PSII in leaves during state transitions using fast repetition rate light induced fluorescence transients [J]. Functional Plant Biology. 2019, 46(6): 567-583.

【13】Sonneveld A, Rademaker H. Duysens L N M. Transfer and trapping of excitation energy in photosystem II as studied by chlorophyll a2 fluorescence quenching by dinitrobenzene and carotenoid triplet. The matrix model [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1980, 593(2): 272-289.

【14】Chen S, Yin G F, Zhao N J, et al. Analysis of phytoplankton concentration of functional reaction centers based on fluorescence dynamics parameters [J]. Acta Optica Sinica. 2018, 38(6): 0630004.
陈双, 殷高方, 赵南京, 等. 基于荧光动力学参数的浮游植物有效光合反应中心浓度分析 [J]. 光学学报. 2018, 38(6): 0630004.

【15】Boisvert S, Joly D, Carpentier R. Quantitative analysis of the experimental O-J-I-P chlorophyll fluorescence induction kinetics [J]. The FEBS Journal. 2006, 273(20): 4770-4777.

【16】Laney S R. In situ measurement of variable fluorescence transients [J]. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. 2010, 19-30.

【17】Suggett D J, Oxborough K, Baker N R, et al. Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton [J]. European Journal of Phycology. 2003, 38(4): 371-384.

【18】Han B P, Han Z G, Fu X. Algal photosynthesis: mechanisms and models[M]. Beijing: Science Press, 2003.
韩博平, 韩志国, 付翔. 藻类光合作用机理与模型[M]. 北京: 科学出版社, 2003.

【19】Chen M, Yin G F, Zhao N J, et al. Response of photosynthetic activity parameters of algae under phenol stress [J]. Acta Optica Sinica. 2019, 39(12): 1217002.
陈敏, 殷高方, 赵南京, 等. 苯酚胁迫下藻类光合活性参数的响应规律 [J]. 光学学报. 2019, 39(12): 1217002.

【20】Chen S, Yin G F, Zhao N J, et al. Measurement of primary productivity of phytoplankton based on photosynthetic electron transport rate [J]. Acta Optica Sinica. 2018, 38(11): 1126001.
陈双, 殷高方, 赵南京, 等. 基于光合电子传递速率的浮游植物初级生产力测量 [J]. 光学学报. 2018, 38(11): 1126001.

引用该论文

Wang Xiang,Ying Gaofang,Zhao Nanjing,Gan Tingting,Qin Zhisong,Chen Min,Hua Hui,Dong Ming,Ding Zhichao,Qi Peilong,Wang Lu,Meng Deshuo,Liu Jianguo. Adaptive Method of Excitation Light Intensity Based on TPLIF Technology for Fast and Accurate Measurement of Photosynthetic Fluorescence Parameters[J]. Acta Optica Sinica, 2020, 40(24): 2412001

王翔,殷高方,赵南京,甘婷婷,覃志松,陈敏,华卉,董鸣,丁志超,亓培龙,王璐,孟德硕,刘建国. 基于TPLIF技术的光合荧光参数快速准确测量的激发光强自适应方法[J]. 光学学报, 2020, 40(24): 2412001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF