首页 > 论文 > 光学学报 > 39卷 > 7期(pp:706001--1)

湍流信道中的分层光空间调制

Layered Optical Spatial Modulation in Turbulent Channels

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将分层技术引入光空间调制中,同时激活两个分别采用脉冲位置调制(PPM)和脉冲幅度调制(PAM)的激光器,构建一种适用于湍流信道的分层光空间调制(LOSM)系统。在详细介绍系统中层映射和比特映射原理的基础上,推导出分层光空间调制系统的误码率表达式,并利用蒙特卡罗仿真进一步验证了该方案的正确性。结果表明,与传统光空间调制系统相比,分层光空间调制系统可大大提高系统的频谱效率。在传输速率相同的情况下,(5,4,2,4)-LOSM系统的频谱效率是(8,4,16)-SPPM (空间脉冲位置调制)系统的9倍以上;当频谱效率为4 bit·s -1·Hz -1时,(5,4,2,4)-LOSM系统与(8,4,2)-SPAM(空间脉冲幅度调制)系统具有相同的误码性能,但前者的传输速率几乎是后者的2倍。

Abstract

Layered spatial modulation technique is introduced into free space optical communications. A layered optical spatial modulation (LOSM) system suitable for turbulent channels is proposed by simultaneously activating two lasers using pulse position modulation (PPM) and pulse amplitude modulation (PAM), respectively. The principle of layer mapping and bit mapping is described in detail, based on which the bit error rate expression of the proposed LOSM system is derived, and the Monte Carlo simulation is utilized to verify its reliability. The simulation results show that the LOSM system can greatly improve the spectral efficiency of the system. For example, the spectral efficiency of the (5,4,2,4)-LOSM system is more than 9 times that of the (8,4,16)-SPPM (spatial pulse position modulation) system for the same transmission rate. When the spectral efficiency is 4 bit·s -1·Hz -1, the transmission rate of the (5,4,2,4)-LOSM system is nearly twice that of the (8,4,2)-SPAM (spatial pulse amplitude modulation) system, and the two systems have the same bit error performance.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.0706001

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、甘肃省教育厅高等学校科学研究项目、兰州理工大学博士基金;

收稿日期:2019-02-13

修改稿日期:2019-03-22

网络出版日期:2019-07-01

作者单位    点击查看

王惠琴:兰州理工大学计算机与通信学院, 甘肃 兰州 730050
李亚婷:兰州理工大学计算机与通信学院, 甘肃 兰州 730050
曹明华:兰州理工大学计算机与通信学院, 甘肃 兰州 730050
包仲贤:兰州理工大学计算机与通信学院, 甘肃 兰州 730050

联系人作者:王惠琴(15117024169@139.com)

备注:国家自然科学基金、甘肃省教育厅高等学校科学研究项目、兰州理工大学博士基金;

【1】di Renzo M, Haas H, Ghrayeb A et al. . Spatial modulation for generalized MIMO: challenges, opportunities, and implementation. Proceedings of the IEEE. 102(1), 56-103(2014).

【2】Wang H Q and Ke X Z. Free space optical communication based on vertical bell labs layered space-time. Chinese Journal of Lasers. 35(6), 874-878(2008).
王惠琴, 柯熙政. 基于垂直分层空时编码的自由空间光通信. 中国激光. 35(6), 874-878(2008).

【3】Cao Y, Zhang X, Peng X F et al. Cascade scheme based on multiple-input multiple-output in spatial optical communication. Acta Optica Sinica. 38(1), (2018).
曹阳, 张勋, 彭小峰 等. 空间光通信中基于多输入多输出的级联码方案研究. 光学学报. 38(1), (2018).

【4】Mesleh R Y, Haas H, Sinanovic S et al. Spatial modulation. IEEE Transactions on Vehicular Technology. 57(4), 2228-2241(2008).

【5】Mesleh R, Elgala H and Haas H. Optical spatial modulation. Journal of Optical Communications and Networking. 3(3), 234-244(2011).

【6】Abaza M, Mesleh R, Mansour A et al. The performance of space shift keying for free-space optical communications over turbulent channels. Proceedings of SPIE. 9387, (2015).

【7】Pham H T T, Chu D B and Dang N T. Performance analysis of spatial PPM-based free-space optical communication systems with Gaussian beam. [C]∥2014 International Conference on Advanced Technologies for Communications (ATC 2014), October 15-17, 2014, Hanoi, Vietnam. New York: IEEE. 144-148(2014).

【8】zbilgin T and Koca M. Optical spatial modulation over atmospheric turbulence channels. Journal of Lightwave Technology. 33(11), 2313-2323(2015).

【9】Fang S, Li L, Hu S et al. Layered space shift keying modulation over MIMO channels. IEEE Transactions on Vehicular Technology. 66(1), 159-174(2017).

【10】Wang J T, Jia S Y and Song J. Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Transactions on Wireless Communications. 11(4), 1605-1615(2012).

【11】zbilgin T and Koca M. Optical spatial modulation with polarization shift keying over atmospheric turbulence channels. [C]∥2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), December 14-16, 2015, Orlando, FL, USA. New York: IEEE. 1032-1036(2015).

【12】Ke X Z and Deng L J. Wireless optical communication. 102-107(2016).
柯熙政, 邓莉君. 无线光通信. 102-107(2016).

【13】di Renzo M and Haas H. Performance analysis of spatial modulation. [C]∥2010 5th International ICST Conference on Communications and Networking in China, August 25-27, 2010, Beijing, China. New York: IEEE. 11744362, (2010).

【14】Wang H Q, Wang X and Cao M H. Bit error rate of optical multiple input multiple output system in correlated channel. Optics and Precision Engineering. 24(9), 2142-2148(2016).
王惠琴, 王雪, 曹明华. 相关信道中光多输入多输出系统的误码率. 光学精密工程. 24(9), 2142-2148(2016).

【15】Craig J W. A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. [C]∥Military Communications Conference, November 4-7, 1991, McLean, VA, USA. New York: IEEE. 571-575(2002).

【16】Yang G W, Khalighi M A, Virieux T et al. Contrasting space-time schemes for MIMO FSO systems with non-coherent modulation. [C]∥2012 International Workshop on Optical Wireless Communications (IWOW), October 22, 2012, Pisa, ltaly. New York: IEEE. 6349694, (2012).

引用该论文

Wang Huiqin,Li Yating,Cao Minghua,Bao Zhongxian. Layered Optical Spatial Modulation in Turbulent Channels[J]. Acta Optica Sinica, 2019, 39(7): 0706001

王惠琴,李亚婷,曹明华,包仲贤. 湍流信道中的分层光空间调制[J]. 光学学报, 2019, 39(7): 0706001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF