首页 > 论文 > 中国激光 > 47卷 > 12期(pp:1201005--1)

基于全介质共振域光栅的偏振器件设计与制备

Design and Fabrication of Polarizer Based on All-Dielectric Resonance-Domain Grating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于共振域光栅的特性,采用商用绝缘硅片设计并制备了一种用于近红外通信波段的高性能偏振器件。在1.460~1.625μm的波长范围内,利用时域有限差分算法设计了一种周期为0.98μm的全介质共振域光栅,该光栅的消光比最大值为55dB。根据设计结果,采用电子束直写曝光技术对该偏振光栅进行了实验制备,并进行偏振性能测试。结果表明,该光栅的横向磁场偏振光透过率约在80%以上,消光比在20dB以上,最大值可达到32dB,与仿真结果基本一致。相比于传统亚波长金属光栅的周期需要小于1/4入射光波长才能起偏的性质,该偏振光栅在周期为近波长的条件下即有较好的偏振性能,在制备上降低了光刻工艺的难度。此外,该偏振器件是基于商用绝缘硅片制备,与现有的成熟半导体工艺兼容,具有较强的集成性和实用性。

Abstract

Based on the characteristics of resonance-domain grating, a high performance polarizer for near-infrared communication band is designed and fabricated using commercial silicon-on-insulator(SOI). In the wavelength range of 1.460μm to 1.625μm, an all-dielectric resonance-domain grating with a period of 0.98μm is designed by use of finite difference time domain method. The maximum extinction ratio of the grating is up to 55dB. According to the results of the design, the polarization grating is experimentally fabricated by electron beam lithography and the polarization performance of grating is measured. Experimental results show that the transmission of transverse magnetic polarized light of grating exceeds 80%, the extinction ratio of the polarization grating is more than 20dB, and the maximum value can reach up to 32dB, agreeing well with the simulation results. Compared with the polarization characteristics of the traditional sub-wavelength metal grating whose period requires less than a quarter of the incident light wavelength, the polarization grating exhibits good polarization performance with near wavelength grating period, reducing the difficulty of lithography in fabrication. Moreover, the polarizer is fabricated based on commercial SOI, which is compatible with the existing mature semiconductor technology and has strong integration and practicability.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.1201005

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金、 上海市扬帆计划、 上海市自然科学基金、 江苏省重点实验室开放性课题;

收稿日期:2020-07-02

修改稿日期:2020-07-30

网络出版日期:2020-12-01

作者单位    点击查看

魏张帆:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
胡敬佩:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
张冲:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
董延更:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
曾爱军:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
黄惠杰:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049

联系人作者:胡敬佩(hujingpei@siom.ac.cn); 曾爱军(hujingpei@siom.ac.cn);

备注:国家自然科学基金、 上海市扬帆计划、 上海市自然科学基金、 江苏省重点实验室开放性课题;

【1】Korte E H, Roseler A. Infrared spectroscopic ellipsometry: a tool for characterizing nanometer layers [J]. Analyst. 1998, 123(4): 647-651.Korte E H, Roseler A. Infrared spectroscopic ellipsometry: a tool for characterizing nanometer layers [J]. Analyst. 1998, 123(4): 647-651.

【2】Vollmer M, Henke S, Karst?dt D, et al. Identification and suppression of thermal reflections in infrared thermal imaging [J]. InfraMation. 2004, 5: 287-298.

【3】Wu Z, Powers P E, Sarangan A M, et al. Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry [J]. Optics Letters. 2008, 33(15): 1653-1655.

【4】Ren H W, Fan Y H, Wu S T. Prism grating using polymer stabilized nematic liquid crystal [J]. Applied Physics Letters. 2003, 82(19): 3168-3170.

【5】Soares L L, Cescato L. Metallized photoresist grating as a polarizing beam splitter [J]. Applied Optics. 2001, 40(32): 5906-5910.

【6】Fellows N, Sato H, Lin Y, et al. Dichromatic color tuning with InGaN-based light-emitting diodes [J]. Applied Physics Letters. 2008, 93(12): 121112.Fellows N, Sato H, Lin Y, et al. Dichromatic color tuning with InGaN-based light-emitting diodes [J]. Applied Physics Letters. 2008, 93(12): 121112.

【7】Jin Q F, Liu Q, Wu J H, et al. Design and fabrication of nanowire-grid polarizer in near-infrared broadband [J]. Proceedings of SPIE. 2012, 8556: 85561F.

【8】Ekinci Y, Solak H H, David C, et al. Bilayer Al wire-grids as broadband and high-performance polarizers [J]. Optics Express. 2006, 14(6): 2323-2334.

【9】Li M K, Xiang X S, Zhou C H, et al. Two-dimensional grating fabrication based on ultra-precision laser direct writing system [J]. Acta Optica Sinica. 2019, 39(9): 0905001.
李民康, 向显嵩, 周常河, 等. 基于超精密激光直写系统制作二维光栅 [J]. 光学学报. 2019, 39(9): 0905001.

【10】Shen C, Wei S, Yu H X, et al. Model of liquid crystal on silicon device with sub-wavelength grating structure [J]. Acta Optica Sinica. 2020, 40(3): 0305001.
沈川, 韦穗, 虞海秀, 等. 基于亚波长光栅结构的硅基液晶器件模型研究 [J]. 光学学报. 2020, 40(3): 0305001.

【11】Weber T, Kroker S, K?sebier T, et al. Silicon wire grid polarizer for ultraviolet applications [J]. Applied Optics. 2014, 53(34): 8140-8144.

【12】Yamada I, Fukumi K, Nishii J, et al. Near-infrared polarizer with tungsten silicide wire grids [J]. Japanese Journal of Applied Physics. 2011, 50(1): 012502.

【13】Zhang C, Hu J P, Zhou R Y, et al. Design and analysis of inverse polarization grating devices for deep ultraviolet light [J]. Chinese Journal of Lasers. 2020, 47(3): 0301005.
张冲, 胡敬佩, 周如意, 等. 深紫外光栅反常偏振器件的设计与分析 [J]. 中国激光. 2020, 47(3): 0301005.

【14】Ye Y, Zhou Y, Zhang H, et al. Polarizing color filter based on a submicron metal grating [J]. Acta Optica Sinica. 2011, 31(4): 0405003.
叶燕, 周云, 张恒, 等. 金属光栅型偏振彩色滤光片 [J]. 光学学报. 2011, 31(4): 0405003.

【15】Karagodsky V, Sedgwick F G. Chang-Hasnain C J. Theoretical analysis of subwavelength high contrast grating reflectors [J]. Optics Express. 2010, 18(16): 16973-16988.

引用该论文

Wei Zhangfan,Hu Jingpei,Zhang Chong,Dong Yangeng,Zeng Aijun,Huang Huijie. Design and Fabrication of Polarizer Based on All-Dielectric Resonance-Domain Grating[J]. Chinese Journal of Lasers, 2020, 47(12): 1201005

魏张帆,胡敬佩,张冲,董延更,曾爱军,黄惠杰. 基于全介质共振域光栅的偏振器件设计与制备[J]. 中国激光, 2020, 47(12): 1201005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF