首页 > 论文 > Photonics Research > 8卷 > 10期(pp:39-49)

Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Modifying the surface of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) with toluene during the high-speed spin-coating process of dimethylformamide considerably improves the wettability and morphology of PTAA and results in improvement of the crystallinity and absorption of perovskite film. The hole mobility and ohm contact have also been improved accordingly. Combined with these improved parameters, inverted perovskite solar cells with high efficiency of 19.13% and long-term stability could be achieved, which are much better than those with untreated PTAA. Importantly, our devices can keep 88.4% of the initial power conversion efficiency after 30 days of storage in ambient air.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.398529

所属栏目:Research Articles

基金项目:Natural Science Foundation of Guangdong Province10.13039/501100003453; Universidade de Macau10.13039/501100004733; Macau Science and Technology Development Fund; National Natural Science Foundation of China10.13039/501100001809;

收稿日期:2020-06-02

录用日期:2020-07-13

网络出版日期:2020-07-13

作者单位    点击查看

Yang Li:Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
Chao Liang:Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
Gaopeng Wang:Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
Jielei Li:Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
Shi Chen:Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
Shihe Yang:Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
Guichuan Xing:Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China;e-mail: gcxing@um.edu.mo
Hui Pan:Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China;Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, China;e-mail: huipan@um.edu.mo

联系人作者:Guichuan Xing(gcxing@um.edu.mo); Hui Pan(huipan@um.edu.mo);

备注:Natural Science Foundation of Guangdong Province10.13039/501100003453; Universidade de Macau10.13039/501100004733; Macau Science and Technology Development Fund; National Natural Science Foundation of China10.13039/501100001809;

【1】M. A. Green, A. Ho-Baillie and H. J. Snaith. The emergence of perovskite solar cells. Nat. Photonics. 8, 506-514(2014).

【2】A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050-6051(2009).

【3】National RenewableNational Renewable. Best-research-cell-efficiencies-20200406. (0).National RenewableNational Renewable. Best-research-cell-efficiencies-20200406. (0).

【4】J. A. Christians, S. N. Habisreutinger, J. J. Berry and J. M. Luther. Stability in perovskite photovoltaics: a paradigm for newfangled technologies. ACS Energy Lett. 3, 2136-2143(2018).

【5】H. J. Jung, D. Kim, S. Kim, J. Park, V. P. Dravid and B. Shin. Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing. Adv. Mater. 30, (2018).

【6】A. Rajagopal, K. Yao and A. K. Y. Jen. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater. 30, (2018).

【7】L. F. Liu, A. Y. Mei, T. F. Liu, P. Jiang, Y. S. Sheng, L. J. Zhang and H. W. Han. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790-1793(2015).

【8】L. J. Zuo, Z. W. Gu, T. Ye, W. F. Fu, G. Wu, H. Y. Li and H. Z. Chen. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 2674-2679(2015).

【9】E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh and J. Seo. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature. 567, 511-515(2019).

【10】Y. Li, L. Ji, R. Liu, C. Zhang, C. H. Mak, X. Zou, H.-H. Shen, S.-Y. Leu and H.-Y. Hsu. A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A. 6, 12842-12875(2018).

【11】S. I. Seok, M. Gratzel and N. G. Park. Methodologies toward highly efficient perovskite solar cells. Small. 14, (2018).

【12】T. Liu, K. Chen, Q. Hu, R. Zhu and Q. Gong. Inverted perovskite solar cells: progresses and perspectives. Adv. Energy Mater. 6, (2016).

【13】S. Ameen, M. A. Rub, S. A. Kosa, K. A. Alamry, M. S. Akhtar, H. S. Shin, H. K. Seo, A. M. Asiri and M. K. Nazeeruddin. Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem. 9, 10-27(2016).

【14】X. W. Xu, C. Q. Ma, Y. H. Cheng, Y. M. Xie, X. P. Yi, B. Gautam, S. M. Chen, H. W. Li, C. S. Lee, F. So and S. W. Tsang. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. J. Power Sources. 360, 157-165(2017).

【15】N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin and M. Gratzel. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science. 358, 768-771(2017).

【16】C. T. Zuo and L. M. Ding. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small. 11, 5528-5532(2015).

【17】J. B. You, Z. R. Hong, Y. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. R. Lu, Y. S. Liu, H. P. Zhou and Y. Yang. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 8, 1674-1680(2014).

【18】Q. Wang, C. Bi and J. Huang. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy. 15, 275-280(2015).

【19】C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao and J. Huang. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, (2015).

【20】D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith and R. Zhu. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science. 360, 1442-1446(2018).

【21】W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, U. L. Dong, S. S. Shin, J. Seo, E. K. Kim and J. H. Noh. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 356, 1376-1379(2017).

【22】Y. Shao, Y. Yuan and J. Huang. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cell. Nat. Energy. 1, (2016).

【23】J. Cao, B. H. Wu, R. H. Chen, Y. Y. Q. Wu, Y. Hui, B. W. Mao and N. F. Zheng. Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater. 30, (2018).

【24】T. Singh, S. Oz, A. Sasinska, R. Frohnhoven, S. Mathur and T. Miyasaka. Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers. Adv. Funct. Mater. 28, (2018).

【25】Y. Reyna, M. Salado, S. Kazim, A. Pérez-Tomas, S. Ahmad and M. Lira-Cantu. Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy. 30, 570-579(2016).

【26】K. T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee and M. K. Nazeeruddin. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10, 621-627(2017).

【27】Y. C. Kim, N. J. Jeon, J. H. Noh, W. S. Yang, J. Seo, J. S. Yun, A. Ho-Baillie, S. J. Huang, M. A. Green, J. Seidel, T. K. Ahn and S. Seok. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6, (2016).

【28】T. J. Jacobsson, J.-P. Correa-Baena, E. H. Anaraki, B. Philippe, S. D. Stranks, M. E. F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J.-E. Moser, H. Rensmo and A. Hagfeldt. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138, 10331-10343(2016).

【29】V. Ramana, H. Su, Y. Wu, H. Wu, J. Xie, X. Liu, J. Fan, J. Dai and Z. He. Photon-generated carriers excited superoxide species inducing long-term photoluminescence enhancement of MAPbI3 perovskite single crystals. J. Mater. Chem. A. 5, 12048-12053(2017).

【30】W. Chen, G.-N. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang and Z. He. Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Mater. Today Energy. 1, 1-10(2016).

【31】H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K. Jen and W. C. Choy. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano. 10, 1503-1511(2016).

【32】A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Jen and H. J. Snaith. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124-3128(2013).

【33】Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science. 347, 967-970(2015).

【34】J. H. Heo, H. J. Han, D. Kim, T. K. Ahn and S. H. Im. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602-1608(2015).

【35】M. Bag, L. A. Renna, R. Y. Adhikari, S. Karak, F. Liu, P. M. Lahti, T. P. Russell, M. T. Tuominen and D. Venkataraman. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137, 13130-13137(2015).

【36】J. A. Bartelt, D. Lam, T. M. Burke, S. M. Sweetnam and M. D. McGehee. Charge-carrier mobility requirements for bulk heterojunction solar cells with high fill factor and external quantum efficiency >90%. Adv. Energy Mater. 5, (2015).

引用该论文

Yang Li, Chao Liang, Gaopeng Wang, Jielei Li, Shi Chen, Shihe Yang, Guichuan Xing, and Hui Pan, "Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells," Photonics Research 8(10), A39 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF