首页 > 论文 > 光学学报 > 40卷 > 2期(pp:0210002--1)

基于超像素仿射传播聚类的视网膜血管分割

Retinal Vessel Segmentation Based on Super-Pixel Affinity Propagation Clustering

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于超像素仿射传播聚类的视网膜血管分割方法。首先对预处理后的图像提取Hessian最大本征值、Gabor小波、B-COSFIRE滤波特征,构建3维眼底图像像素特征;同时对眼底图像进行超像素分块,并采用一致性准则对所分的超像素块进行筛选,得到超像素候选块;把超像素候选块当作样本点,把候选块内的像素特征的统计平均值当作特征向量,在特征空间中进行仿射传播聚类得出血管类和背景类两个聚类中心;根据血管类和背景类两个聚类中心,采用最近邻方法对眼底像素进行分类,实现对视网膜血管的分割。实验表明:在DRIVE和STARE眼底图像数据库上,本文算法的平均准确率分别为94.63%和94.30%;相较于K-means、模糊C均值(FCM)和其他聚类方法,本方法对血管的识别度高,所分割的视网膜血管有较好的连续性和完整性。

Abstract

A retinal vessel segmentation method based on the affinity propagation clustering of superpixels was proposed herein. First, the maximum Hessian eigenvalue, the Gabor wavelet, and the B-COSFIRE filtering features were extracted from the preprocessed image to construct the three-dimensional fundus image. The fundus image was segmented into superpixel blocks, which were screened based on a pixel consistency criterion to select the best candidates; these candidates were considered as sample points and their statistical average pixel values were used as the feature vectors. Two clustering centers of the vessel and background classes were obtained by performing affinity propagation clustering on the feature space. Based on these clustering centers, the fundus pixels were classified via the nearest neighbor method for retinal vessel segmentation. The experimental results show that the accuracies are 94.63% and 94.30% for the DRIVE and STARE fundus image databases, respectively. Compared with K-means clustering, FCM (Fuzzy C-means), and other clustering methods, the proposed technique presents a high recognition degree for blood vessels and better continuity and integrity of the segmented retinal vessels.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN911.73

DOI:10.3788/AOS202040.0210002

所属栏目:图像处理

基金项目:国家自然科学基金;

收稿日期:2019-08-01

修改稿日期:2019-09-19

网络出版日期:2020-02-01

作者单位    点击查看

许言兵:华南师范大学物理与电信工程学院, 广东 广州 510006
周阳:华南师范大学物理与电信工程学院, 广东 广州 510006
李灿标:华南师范大学物理与电信工程学院, 广东 广州 510006
郑楚君:华南师范大学物理与电信工程学院, 广东 广州 510006
张润谷:华南师范大学物理与电信工程学院, 广东 广州 510006
王文斌:华南师范大学物理与电信工程学院, 广东 广州 510006

联系人作者:郑楚君(cjzheng@scnu.edu.cn)

备注:国家自然科学基金;

【1】Zhu C Z, Zou B J, Xiang Y, et al. A survey of retinal vessel segmentation in fundus images [J]. Journal of Computer-Aided Design & Computer Graphics. 2015, 27(11): 2046-2057.
朱承璋, 邹北骥, 向遥, 等. 彩色眼底图像视网膜血管分割方法研究进展 [J]. 计算机辅助设计与图形学学报. 2015, 27(11): 2046-2057.

【2】Li Y Y, Cai Y H, Gao X R. Retinal vessel segmentation algorithm based on hybrid phase feature [J]. Journal of Computer Applications. 2018, 38(7): 2083-2088.
李媛媛, 蔡轶珩, 高旭蓉. 基于融合相位特征的视网膜血管分割算法 [J]. 计算机应用. 2018, 38(7): 2083-2088.

【3】Liang L M, Liu B W, Yang H L, et al. Supervised blood vessel extraction in retinal images based on multiple feature fusion [J]. Chinese Journal of Computers. 2018, 41(11): 2566-2580.
梁礼明, 刘博文, 杨海龙, 等. 基于多特征融合的有监督视网膜血管提取 [J]. 计算机学报. 2018, 41(11): 2566-2580.

【4】Wu K, Cai D M, Jia P, et al. Retinal vessel segmentation based on 2D Gabor wavelet and combined line operators [J]. Science Technology and Engineering. 2016, 16(12): 106-112.
吴奎, 蔡冬梅, 贾鹏, 等. 基于2D Gabor小波与组合线检测算子的视网膜血管分割 [J]. 科学技术与工程. 2016, 16(12): 106-112.

【5】Zheng T Y, Tang C, Lei Z K. Multi-scale retinal vessel segmentation based on fully convolutional neural network [J]. Acta Optica Sinica. 2019, 39(2): 0211002.
郑婷月, 唐晨, 雷振坤. 基于全卷积神经网络的多尺度视网膜血管分割 [J]. 光学学报. 2019, 39(2): 0211002.

【6】Vlachos M, Dermatas E. Multi-scale retinal vessel segmentation using line tracking [J]. Computerized Medical Imaging and Graphics. 2010, 34(3): 213-227.

【7】Meng L, Liu J, Cao H, et al. Retinal vessel segmentation based on Frangi filter and Otsu algorithm [J]. Laser & Optoelectronics Progress. 2019, 56(18): 181004.
孟琳, 刘静, 曹慧, 等. 基于Frangi滤波器和Ostu视网膜血管分割 [J]. 激光与光电子学进展. 2019, 56(18): 181004.

【8】Chen L, Chen X Y. Retinal vessel segmentation based on feature combination and multimodel learning [J]. Computer Engineering and Applications. 2019, 55(17): 214-220.
陈莉, 陈晓云. 特征组合和多模块学习的视网膜血管分割 [J]. 计算机工程与应用. 2019, 55(17): 214-220.

【9】Kande G B, Subbaiah P V, Savithri T S. Unsupervised fuzzy based vessel segmentation in pathological digital fundus images [J]. Journal of Medical Systems. 2010, 34(5): 849-858.

【10】Yavuz Z, K?se C. Blood vessel extraction in color retinal fundus images with enhancement filtering and unsupervised classification [J]. Journal of Healthcare Engineering. 2017, 2017: 4897258.

【11】Frey B J, Dueck D. Clustering by passing messages between data points [J]. Science. 2007, 315(5814): 972-976.

【12】Zhou Y. Retinal vasular segmentation based on local feature space guided by matching filter of affinity propagation clustering [D]. Guangzhou: South China Normal University. 2019.
周阳. 基于匹配滤波引导局部特征空间仿射传播聚类的视网膜血管分割 [D]. 广州: 华南师范大学. 2019.

【13】Azzopardi G, Strisciuglio N, Vento M, et al. Trainable COSFIRE filters for vessel delineation with application to retinal images [J]. Medical Image Analysis. 2015, 19(1): 46-57.

【14】Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012, 34(11): 2274-2282.

【15】Staal J, Abramoff M D, Niemeijer M, et al. Ridge-based vessel segmentation in color images of the retina [J]. IEEE Transactions on Medical Imaging. 2004, 23(4): 501-509.

【16】Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response [J]. IEEE Transactions on Medical Imaging. 2000, 19(3): 203-210.

【17】Bankhead P, Scholfield C N. McGeown J G, et al. Fast retinal vessel detection and measurement using wavelets and edge location refinement [J]. PLoS One. 2012, 7(3): e32435.

【18】Yin Y, Adel M, Bourennane S. Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation [J]. Computational and Mathematical Methods in Medicine. 2013, 2013: 260410.

【19】Fraz M M, Basit A, Barman S A. Application of morphological bit planes in retinal blood vessel extraction [J]. Journal of Digital Imaging. 2013, 26(2): 274-286.

【20】Wang W H, Zhang J Z, Wu W Y. New approach to segment retinal vessel using morphology and Otsu [J]. Application Research of Computers. 2019, 36(7): 2228-2231.
汪维华, 张景中, 吴文渊. 改进的形态学与Otsu相结合的视网膜血管分割 [J]. 计算机应用研究. 2019, 36(7): 2228-2231.

【21】Nguyen U T V, Bhuiyan A, Park L A F, et al. An effective retinal blood vessel segmentation method using multi-scale line detection [J]. Pattern Recognition. 2013, 46(3): 703-715.

【22】Yin B J, Li H T, Sheng B, et al. Vessel extraction from non-fluorescein fundus images using orientation-aware detector [J]. Medical Image Analysis. 2015, 26(1): 232-242.

引用该论文

Xu Yanbing,Zhou Yang,Li Canbiao,Zheng Chujun,Zhang Rungu,Wang Wenbin. Retinal Vessel Segmentation Based on Super-Pixel Affinity Propagation Clustering[J]. Acta Optica Sinica, 2020, 40(2): 0210002

许言兵,周阳,李灿标,郑楚君,张润谷,王文斌. 基于超像素仿射传播聚类的视网膜血管分割[J]. 光学学报, 2020, 40(2): 0210002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF