首页 > 论文 > 中国激光 > 47卷 > 1期(pp:100002--1)

液晶光学器件的近红外激光损伤研究进展

Research Progress on Near-Infrared High-Power Laser Damage of Liquid Crystal Optical Devices

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

液晶光学器件在激光聚变、光电对抗、激光雷达、激光通信等领域的应用面临着近红外高功率激光辐照失效的风险。在介绍液晶光学器件基本结构和基本工作原理的基础上,按照液晶光学器件的组成,依次对构成液晶光学器件的导电膜、取向膜、液晶材料,以及整体液晶光学器件在近红外激光辐照下的损伤特性及机制的研究进展进行了综述。

Abstract

The liquid crystal optical devices that are used in fusion ignition, optoelectronic countermeasure, laser radar, and laser communication encounter a performance failure that can be attributed to the near-infrared high-power laser irradiation. In this study, the basic constituent components and working principle of the liquid crystal optical devices are initially introduced. Subsequently, the laser damage characteristics and mechanisms of the conductive film, alignment film, and liquid crystal material, which are the main constituent components of the liquid crystal optical devices, are reviewed. Finally, the laser damage characteristics and mechanisms of the whole liquid crystal optical under the radiation of near-infrared laser are summarized.

广告组5 - 光束分析仪
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.0100002

所属栏目:综述

基金项目:国家自然科学基金、脉冲功率激光技术国家重点实验室开放基金;

收稿日期:2019-06-18

修改稿日期:2019-10-09

网络出版日期:2020-01-01

作者单位    点击查看

刘晓凤:国防科技大学脉冲功率激光技术国家重点实验室, 安徽 合肥 230037中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院强激光材料重点实验室, 上海201800
彭丽萍:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院强激光材料重点实验室, 上海201800中国科学院大学材料与光电研究中心, 北京 100049
赵元安:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院强激光材料重点实验室, 上海201800中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
王玺:国防科技大学脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
李大伟:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院强激光材料重点实验室, 上海201800
邵建达:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院强激光材料重点实验室, 上海201800

联系人作者:赵元安(yazhao@siom.ac.cn); 邵建达(jdshao@mail.shcnc.ac.cn);

备注:国家自然科学基金、脉冲功率激光技术国家重点实验室开放基金;

【1】Heebner J, Borden M, Miller P, et al. Programmable beam spatial shaping system for the national ignition facility [J]. Proceedings of SPIE. 2011, 7916: 79160H.

【2】Huang D J, Fan W, Cheng H, et al. Wavefront control of laser beam using optically addressed liquid crystal modulator [J]. High Power Laser Science and Engineering. 2018, 6: e20.

【3】Beeckman J, Neyts K. Vanbrabant P J M. Liquid-crystal photonic applications [J]. Optical Engineering. 2011, 50(8): 081202.

【4】Jacobs S D, Cerqua K A, Marshall K L, et al. Liquid-crystal laser optics: design, fabrication, and performance [J]. Journal of the Optical Society of America B. 1988, 5(9): 1962-1979.

【5】Chapin S C, Germain V, Dufresne E R. Automated trapping, assembly, and sorting with holographic optical tweezers [J]. Optics Express. 2006, 14(26): 13095-13100.

【6】Sinclair G, Jordan P, Courtial J, et al. Assembly of 3-dimensional structures using programmable holographic optical tweezers [J]. Optics Express. 2004, 12(22): 5475-5480.

【7】Mu Q Q, Cao Z L, Hu L F, et al. Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector [J]. Optics Communications. 2012, 285(6): 896-899.

【8】Ke X Z, Han K N. Wavefront simulation and wavefront correction of liquid crystal spatial light modulator [J]. Laser & Optoelectronics Progress. 2019, 56(5): 051403.
柯熙政, 韩柯娜. 液晶空间光调制器的波前模拟及波前校正 [J]. 激光与光电子学进展. 2019, 56(5): 051403.

【9】Resler D P, Hobbs D S, Sharp R C, et al. High-efficiency liquid-crystal optical phased-array beam steering [J]. Optics Letters. 1996, 21(9): 689-691.

【10】Hu J, Du S P, Guo H Y. Research progress on beam scanning based on liquid crystal optical phased array [J]. Laser & Optoelectronics Progress. 2019, 56(11): 110002.
胡婕, 杜升平, 郭弘扬. 基于液晶光学相控阵的光束扫描研究进展 [J]. 激光与光电子学进展. 2019, 56(11): 110002.

【11】Wang X R, Zhou Z Q. Research progress of liquid crystal optical phased array in high power laser applications [J]. Infrared and Laser Engineering. 2018, 47(1): 0103006.
汪相如, 周庄奇. 液晶光学相控阵在高功率激光应用中的研究进展 [J]. 红外与激光工程. 2018, 47(1): 0103006.

【12】Wu S T. Molecular design strategies for high birefringence liquid crystals [J]. MRS Proceedings. 2002, 709: 219-228.

【13】Wu S T. Birefringence dispersions of liquid crystals [J]. Physical Review A. 1986, 33(2): 1270-1274.

【14】Korenic E M, Jacobs S D, Houghton J K, et al. Nematic polymer liquid-crystal wave plate for high-power lasers at 1054 nm [J]. Applied Optics. 1994, 33(10): 1889-1899.

【15】Kosc T Z, Owens A R, Rigatti A L, et al. Long-term performance of liquid crystal optics on large fusion lasers . [C]∥CLEO: 2013, June 9-14, 2013, San Jose, CA, USA. Washington, D.C.: OSA. 2013, CTu2D: 3.

【16】Engineering liquid crystals for optimal uses in optical communication systems [J]. Liquid Crystals. 2004, 31(2): 241-269.

【17】Buck J, Serati S, Hosting L, et al. Polarization gratings for non-mechanical beam steering applications [J]. Proceedings of SPIE. 2012, 8395: 83950F.

【18】Andrienko D, Kurioz Y, Nishikawa M, et al. Control of the anchoring energy of rubbed polyimide layers by irradiation with depolarized UV-light [J]. Japanese Journal of Applied Physics. 2000, 39(3A): 1217-1220.

【19】Xiao W B. Research on beam steering control based on liquid crystal optical phased array [D]. Chengdu: Institute of Optics and Electronics Chinese Academy Science. 2013, 11-12.
肖文奔. 基于液晶光学相控阵的光束偏转控制技术研究 [D]. 成都: 中国科学院光电技术研究所. 2013, 11-12.

【20】Davis S R, Farca G, Rommel S D, et al. Analog, non-mechanical beam-steerer with 80 degree field of regard [J]. Proceedings of SPIE. 2008, 6971: 69710G.

【21】Ma S J. Investigation of the modulation characteristics and applications of the liquid crystal spatial light modulator [D]. Beijing: Beijing University of Technology. 2014, 13.
马思津. 液晶空间光调制器相位调制特性测试及应用研究 [D]. 北京: 北京工业大学. 2014, 13.

【22】Cai D M, Xue L X, Ling N, et al. Characteristics of phase only liquid crystal spatial light modulator [J]. Opto-Electronic Engineering. 2007, 34(11): 19-23.
蔡冬梅, 薛丽霞, 凌宁, 等. 液晶空间光调制器相位调制特性研究 [J]. 光电工程. 2007, 34(11): 19-23.

【23】Lu Q, Sheng L, Zhang X, et al. Investigation on pure phase modulation characteristics of liquid crystal spatial light modulator at oblique incidence [J]. Chinese Journal of Lasers. 2016, 43(1): 0112001.
鲁强, 盛磊, 张鑫, 等. 斜入射下液晶空间光调制器纯相位调制特性研究 [J]. 中国激光. 2016, 43(1): 0112001.

【24】Shi Y B, Si L, Ma Y X. New progress of beam scanning technology [J]. Laser & Optoelectronics Progress. 2013, 50(8): 080024.
师宇斌, 司磊, 马阎星. 光束扫描技术研究新进展 [J]. 激光与光电子学进展. 2013, 50(8): 080024.

【25】Vladimirov F L, Pletneva N I, Morichev I E, et al. Liquid crystal modulators with improved laser damage resistance [J]. Proceedings of SPIE. 1998, 3682: 176-182.

【26】Raszewski Z, Piecek W, Jaroszewicz L, et al. Laser damage resistant nematic liquid crystal cell [J]. Journal of Applied Physics. 2013, 114(5): 053104.

【27】Marshall K L, Saulnier D, Xianyu H Q, et al. Liquid crystal near-IR laser beam shapers employing photoaddressable alignment layers for high-peak-power applications [J]. Proceedings of SPIE. 2013, 8828: 88280N.

【28】Watson E A, Whitaker B, Harris S. Initial high-power-CW-laser testing of liquid-crystal optical phased arrays USA: Air Force Research Lab Sensors Directorate Wright- [R]. Patterson AFB Sensors Directorate. 2005.

【29】Wang H F, Huang Z M, Zhang D Y, et al. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm [J]. Journal of Applied Physics. 2011, 110(11): 113111.

【30】Kim H, Horwitz J S, Kushto G, et al. Effect of film thickness on the properties of indium tin oxide thin films [J]. Journal of Applied Physics. 2000, 88(10): 6021-6025.

【31】Tuna O, Selamet Y, Aygun G, et al. High quality ITO thin films grown by DC and RF sputtering without oxygen [J]. Journal of Physics D: Applied Physics. 2010, 43(5): 055402.

【32】Yoo J H, Menor M G, Adams J J, et al. Laser damage mechanisms in conductive widegap semiconductor films [J]. Optics Express. 2016, 24(16): 17616-17634.

【33】Yoo J H, Matthews M, Ramsey P, et al. Thermally ruggedized ITO transparent electrode films for high power optoelectronics [J]. Optics Express. 2017, 25(21): 25533-25545.

【34】Elhadj S, Yoo J H, Negres R A, et al. Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling [J]. Optical Materials Express. 2017, 7(1): 202-212.

【35】Liu X F, Peng L P, Gao Y Q, et al. Laser damage characteristics of indium-tin-oxide film and polyimide film [J]. Infrared Physics & Technology. 2019, 99: 80-85.

【36】Xiao S Z, Gurevich E L, Ostendorf A. Incubation effect and its influence on laser patterning of ITO thin film [J]. Applied Physics A. 2012, 107(2): 333-338.

【37】Yoo J H, Lange A, Bude J, et al. Optical and electrical properties of indium tin oxide films near their laser damage threshold [J]. Optical Materials Express. 2017, 7(3): 817-826.

【38】Peng L P, Zhao Y A, Liu X F, et al. Quasi-CW laser-induced damage of indium tin oxide films and polyimide films at 1064 nm wavelength [J]. Proceedings of SPIE. 2018, 10713: 10713M.

【39】Li Y L. Laser damage on functional films of liquid crystal optical elements [D]. Mianyang: Institute of Fluid Physics China Academy of Engineering Physics. 2010, 18-19.
李阳龙. 液晶光学器件功能薄膜的激光损伤机理研究 [D]. 绵阳: 中国工程物理研究院流体物理研究所. 2010, 18-19.

【40】Bai X. Effect of polyimide alignment film manufacturing conditions on the pretilt angle of liquid crystal [D]. Chengdu: Sichuan University. 2007, 12-13.
白星. 聚酰亚胺取向膜制备条件对液晶预倾角的影响 [D]. 成都: 四川大学. 2007, 12-13.

【41】Haq B S, Khan H U, Alam K, et al. Femtosecond pulsed laser ablation of polyimide at oblique angles for medical applications [J]. Applied Optics. 2015, 54(24): 7413-7418.

【42】Adhi K P, Owings R L, Railkar T A, et al. Chemical modifications in femtosecond ultraviolet (248 nm) excimer laser radiation-processed polyimide [J]. Applied Surface Science. 2004, 225: 324-331.

【43】Lin C J, Hong G T, Pan R P. Alignment control of rubbed polyimide layers by UV-irradiation [J]. Molecular Crystals and Liquid Crystals. 2009, 512(1): 91-99.

【44】Du Q F, Chen T, Liu J G, et al. Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser [J]. Applied Surface Science. 2018, 434: 588-595.

【45】Dyer P E, Pervolaraki M, Lippert T. Experimental studies and thermal modelling of 1064- and 532-nm Nd∶YVO4 micro-laser ablation of polyimide [J]. Applied Physics A. 2005, 80(3): 529-536.

【46】Peng L P, Zhao Y A, Liu X F, et al. High-repetition-rate laser-induced damage of indium tin oxide films and polyimide films at a 1064 nm wavelength [J]. Optical Materials Express. 2019, 9(2): 911-922.

【47】Marshall K L, Gan J, Mitchell G, et al. Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications [J]. Proceedings of SPIE. 2008, 7050: 70500L.

【48】Marshall K L, Dorrer C, Vargas M, et al. Photo-aligned liquid crystal devices for high-peak-power laser applications [J]. Proceedings of SPIE. 2012, 8475: 84750U.

【49】Dorrer C. Wei S K H, Leung P, et al. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices [J]. Optics Letters. 2011, 36(20): 4035-4037.

【50】Arakelyan S M, Lyakhov G A, Chilingaryan Y S. Nonlinear optics of liquid crystals [J]. Soviet Physics Uspekhi. 1980, 23(5): 245-268.

【51】Khoo I C, Shen Y R. Liquid crystals: nonlinear optical properties and processes [J]. Optical Engineering. 1985, 24(4): 579-585.

【52】Jánossy I, Kósa T. Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals [J]. Optics Letters. 1992, 17(17): 1183-1185.

【53】Lukishova S G. Nonlinear optical response of cyanobiphenyl liquid crystals to high-power, nanosecond laser radiation [J]. Journal of Nonlinear Optical Physics & Materials. 2000, 9(3): 365-411.

【54】Soileau M J, van Stryland E W, Guha S, et al. Nonlinear optical properties of liquid crystals in the isotropic phase [J]. Molecular Crystals and Liquid Crystals. 1987, 143(1): 139-143.

【55】Zhao X J, Zhang D Y, Wang H F, et al. Research on high power laser induced diffraction ring in 5CB liquid crystal [J]. Acta Photonica Sinica. 2011, 40(8): 1166-1171.
赵祥杰, 张大勇, 王海峰, 等. 强激光条件下5CB液晶中的激光诱导衍射环现象 [J]. 光子学报. 2011, 40(8): 1166-1171.

【56】Lukishova S G, Lebedev K S, Magulariya E A, et al. Reflective nonlinearity of nonabsorbing cholesteric liquid crystal mirrors driven by pulsed high-repetition-rate laser radiation [J]. Proceedings of SPIE. 1999, 3800: 164-172.

【57】Kosc T Z, Marshall K L, Kozlov A A, et al. Damage testing of nematic liquid crystalline materials for femtosecond to nanosecond pulse lengths at 1053 nm [J]. Proceedings of SPIE. 2017, 10447: 104471G.

【58】di Pietro V M, Jullien A, Bortolozzo U, et al. Thermally-induced nonlinear spatial shaping of infrared femtosecond pulses in nematic liquid crystals [J]. Laser Physics Letters. 2019, 16(1): 015301.

【59】Kuzhelev A S, Dudelzak A E. Thermally induced holographic gratings in liquid crystals at telecommunications wavelengths [J]. Journal of Optics A: Pure and Applied Optics. 2003, 5(3): L5-L8.

【60】Cao Z L, Mu Q Q, Hu L F, et al. The durability of a liquid crystal modulator for use with a high power laser [J]. Journal of Optics A: Pure and Applied Optics. 2007, 9(4): 427-430.

【61】Zhu G, Whitehead D, Perrie W, et al. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications [J]. Journal of Physics D: Applied Physics. 2018, 51(9): 095603.

【62】He X X, Wang X R, Wu L, et al. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering [J]. Optics Communications. 2017, 382: 437-443.

【63】Zhou Z Q, Wang X R, Zhuo R S, et al. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter [J]. Applied Physics B. 2018, 124(3): 35.

【64】Zhou Z Q. Research on tolerance high laser power of liquid crystal optical phased array devices [D]. Chengdu:University of Electronic Science and Technology of China. 2015, 61-63.
周庄奇. 高耐受功率液晶光学相控阵器件研究 [D]. 成都: 电子科技大学. 2015, 61-63.

【65】Gu D, Wen B, Mahajan M, et al. High power liquid crystal spatial light modulators [J]. Proceedings of SPIE. 2006, 6306: 630602.

引用该论文

Liu Xiaofeng,Peng Liping,Zhao Yuanan,Wang Xi,Li Dawei,Shao Jianda. Research Progress on Near-Infrared High-Power Laser Damage of Liquid Crystal Optical Devices[J]. Chinese Journal of Lasers, 2020, 47(1): 0100002

刘晓凤,彭丽萍,赵元安,王玺,李大伟,邵建达. 液晶光学器件的近红外激光损伤研究进展[J]. 中国激光, 2020, 47(1): 0100002

被引情况

【1】刘铁诚,胡敬佩,朱玲琳,周如意,张冲,曾爱军,黄惠杰. Sellmeier模型表征混合液晶双折射率色散的实验研究. 中国激光, 2020, 47(8): 804002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF