首页 > 论文 > 激光与光电子学进展 > 57卷 > 9期(pp:92201--1)

基于广义Maxwell模型非球面透镜模压成型的仿真分析

Simulation Analysis of Aspherical Lens Molding Based on Generalized Maxwell Model

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为优化非球面透镜模压成型过程中的工艺参数,利用MSC.Marc软件建立了二维轴对称模型。基于五单元广义Maxwell黏弹性模型对D-ZK3玻璃材料的模压成型过程进行有限元仿真,分析了玻璃预制体和模具等效应力的变化以及模压温度、模压速率、摩擦因数对等效应力的影响。结果表明,透镜边缘的等效应力大于透镜中心,上表面中心点的等效应力大于下表面中心点,透镜和模具的等效应力都随模压速率和摩擦因数的增大而增大、随模压温度的升高而减小,且模具的等效应力大于透镜。正交试验表明,模压温度和模压速率是影响玻璃预制体等效应力的主要因素,结合实际应用得到最合适的模压工艺参数是模压温度为580 ℃、模压速率为0.1 mm/s、摩擦因数为0.2。

Abstract

In order to optimize the process parameters of aspherical lens molding process, a two-dimensional axisymmetric model is established by MSC.Marc software. Based on five-element generalized Maxwell viscoelastic model, a finite element simulation of the molding process of D-ZK3 glass materials is carried out. The changes in equivalent stress of glass preform and dies, and the influence of molding temperature, molding rate, and friction factor on the equivalent stress are analyzed. The results show that the equivalent stress at the edge of the lens is larger than that at the center of the lens, and the equivalent stress at the center point of the upper surface is greater than that at the center point of the lower surface. The equivalent stress of the lens and the die increases with the increase of molding rate and friction coefficient, and decreases with the increase of molding temperature. The equivalent stress of the die is larger than that of the lens. Orthogonal test shows that the molding temperature and molding rate are the main factors affecting the equivalent stress of the glass preform. Combined with practical application, the most suitable molding parameters are molding temperature of 580 ℃, molding rate of 0.1 mm/s, and friction factor of 0.2.

中国激光微信矩阵
补充资料

中图分类号:TH164

DOI:10.3788/LOP57.092201

所属栏目:光学设计与制造

基金项目:天津市自然科学基金;

收稿日期:2019-09-11

修改稿日期:2019-09-24

网络出版日期:2020-05-01

作者单位    点击查看

胡军:天津科技大学机械工程学院, 天津300222
许凯乐:天津科技大学机械工程学院, 天津300222
马壮壮:天津科技大学机械工程学院, 天津300222
马强:天津科技大学机械工程学院, 天津300222

联系人作者:许凯乐(2225166921@qq.com)

备注:天津市自然科学基金;

【1】Chen F J, Yin S H, Fan Y F, et al. Ultra-precision single-point grinding technique and profile error compensation method for machining aspheric mould [J]. Journal of Mechanical Engineering. 2010, 46(23): 186-191.
陈逢军, 尹韶辉, 范玉峰, 等. 一种非球面超精密单点磨削与形状误差补偿技术 [J]. 机械工程学报. 2010, 46(23): 186-191.

【2】Fu X H, Jiang H Y, Zhang J, et al. Preparation of short and medium wave infrared anti-reflective coating based on chalcogenide glass [J]. Chinese Journal of Lasers. 2017, 44(9): 0903002.
付秀华, 姜洪妍, 张静, 等. 基于硫系玻璃的短中波红外减反膜研制 [J]. 中国激光. 2017, 44(9): 0903002.

【3】Zhou T F, Xie J Q, Liang Z Q, et al. Advances and prospects of molding for optical microlens array [J]. Chinese Journal of Optics. 2017, 10(5): 603-618.
周天丰, 解加庆, 梁志强, 等. 光学微透镜阵列模压成形研究进展与展望 [J]. 中国光学. 2017, 10(5): 603-618.

【4】Yan J W, Zhou T F, Masuda J, et al. Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis [J]. Precision Engineering. 2009, 33(2): 150-159.

【5】Yin S H, Huo J J, Zhou T F, et al. Simulation of the heating and pressing parameters of micro aspheric lens molding process [J]. Journal of Hunan University(Natural Sciences). 2011, 38(1): 35-39.
尹韶辉, 霍建杰, 周天丰, 等. 小口径非球面透镜模压成形加热加压参数仿真 [J]. 湖南大学学报(自然科学版). 2011, 38(1): 35-39.

【6】Yin S H, Jin S, Zhu K J, et al. Stress analysis of compression molding of aspherical glass lenses using finite element method [J]. Opto-Electronic Engineering. 2010, 37(10): 111-115, 143.
尹韶辉, 靳松, 朱科军, 等. 非球面玻璃透镜模压成型的有限元应力分析 [J]. 光电工程. 2010, 37(10): 111-115, 143.

【7】Jain A. Experimental study and numerical anslysis of compression molding process for manufacturing precision aspherical glass lenses [D]. Columbus: The Ohio State University. 2006.

【8】Liu W G, Shen P. Viscoelastic properties of chalcogenide glasses and simulation of molding process [J]. Infrared and Laser Engineering. 2012, 41(3): 569-574.
刘卫国, 沈萍. 硫系玻璃的粘弹性及模压工艺的仿真 [J]. 红外与激光工程. 2012, 41(3): 569-574.

【9】Zhang X B, Yin S H, Zhu K J, et al. Simulation of compression molding aspherical glass lenses based on generalized Maxwell model [J]. Materials Review. 2013, 27(20): 148-152.
张小兵, 尹韶辉, 朱科军, 等. 基于广义Maxwell模型的非球面光学镜片成型模拟 [J]. 材料导报. 2013, 27(20): 148-152.

【10】Wang Z B, Li J Q, Zhang F, et al. The design of mold with simulation for chalcogenide glass precision molding [J]. Opto-Electronic Engineering. 2016, 43(5): 53-58.
汪志斌, 李军琪, 张峰, 等. 硫系红外玻璃精密模压模具有限元仿真设计 [J]. 光电工程. 2016, 43(5): 53-58.

【11】Ni J J, Fan Y F, Chen W H. Simulation study of molding of aspherical optical glass lens [J]. Laser & Optoelectronics Progress. 2013, 50(3): 032201.
倪佳佳, 范玉峰, 陈文华. 非球面光学玻璃透镜的模压仿真研究 [J]. 激光与光电子学进展. 2013, 50(3): 032201.

【12】Liu X R, Xue C X. Optimization of molding process parameters of chalcogenide glass based on finite element simulation [J]. Laser & Optoelectronics Progress. 2018, 55(8): 082203.
刘学儒, 薛常喜. 基于有限元仿真的硫系玻璃模压工艺参数优化 [J]. 激光与光电子学进展. 2018, 55(8): 082203.

【13】Chen K. Experimental design and analysis[M]. Beijing: Tsinghua University Press, 2005, 72-136.
陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2005, 72-136.

引用该论文

Hu Jun,Xu Kaile,Ma Zhuangzhuang,Ma Qiang. Simulation Analysis of Aspherical Lens Molding Based on Generalized Maxwell Model[J]. Laser & Optoelectronics Progress, 2020, 57(9): 092201

胡军,许凯乐,马壮壮,马强. 基于广义Maxwell模型非球面透镜模压成型的仿真分析[J]. 激光与光电子学进展, 2020, 57(9): 092201

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF