首页 > 论文 > 中国激光 > 47卷 > 8期(pp:804002--1)

Sellmeier模型表征混合液晶双折射率色散的实验研究

Experimental Study on Birefringence Dispersion for Liquid Crystal Mixture by Sellmeier Model

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

扩展柯西色散模型是表征混合液晶在可见光至红外光谱的通用双折射率色散模型,然而随着混合液晶的应用范围进入紫外光谱区,扩展柯西色散模型不能很好地表征混合液晶在该波长范围内的双折射率色散。为此,引入Sellmeier模型表征混合液晶在紫外至红外光谱的双折射率色散,并利用光谱椭偏仪精确测量混合液晶的双折射率数值,然后采用非线性拟合的方法求解Sellmeier模型系数。结果显示,扩展柯西模型的χ2检验数值为0.0349,而Sellmeier模型的χ2检验数值为0.0019,在标准测试波长589 nm以及紫外波段378 nm下,Sellmeier模型拟合值都更接近于实际测量值。通过实验和χ2检验对比分析可以证明,相比于扩展柯西色散模型,Sellmeier模型在紫外至红外波段具有更好的拟合效果。

Abstract

The extended Cauchy model is a common model for describing the birefringence dispersion of liquid crystal mixture, however, in ultraviolet spectral ranges, the extended Cauchy model can not fit well with the experimental data. Here, we report a Sellmeier model for fitting the birefringence dispersion of liquid crystal mixture in a broad wavelength range from ultraviolet to near infrared. For this purpose, the principal birefringence values were accurately measured using spectroscopic ellipsometer and the Sellmeier coefficients were then obtained by a nonlinear fitting method. The results show that the χ2 of the Sellmeier model is 0.0019 and the χ2 of the extended Cauchy model is 0.0349. In addition, at the standard test wavelength of 589 nm and the ultraviolet wavelength of 378 nm, the fitting values show that the Sellmeier model were closer to the measured values. Both experimental result and χ2 test demonstrate that Sellmeier model has a better fit than extended Cauchy model.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436.3

DOI:10.3788/CJL202047.0804002

所属栏目:测量与计量

基金项目:国家自然科学基金青年基金;

收稿日期:2019-12-18

修改稿日期:2020-03-16

网络出版日期:2020-08-01

作者单位    点击查看

刘铁诚:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料科学与光电工程中心, 北京 100049
胡敬佩:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
朱玲琳:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
周如意:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料科学与光电工程中心, 北京 100049
张冲:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料科学与光电工程中心, 北京 100049
曾爱军:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料科学与光电工程中心, 北京 100049
黄惠杰:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学材料科学与光电工程中心, 北京 100049

联系人作者:胡敬佩(hujingpei@siom.ac.cn); 曾爱军(aijunzeng@siom.ac.cn);

备注:国家自然科学基金青年基金;

【1】Buczkowska M, Derfel G. Influence of the surface pretilt angle on spatially periodic deformations in nematic layers [J]. Liquid Crystals. 2018, 45(7): 961-964.

【2】Zhang Y, Xuan J B, Zhao H J, et al. Integrated spectral phase delay calibration technique for a liquid crystal variable retarder used in wide-bandwidth working channel [J]. Optics & Laser Technology. 2018, 108: 186-192.

【3】Chen H W, Lee J H, Lin B Y, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives [J]. Light, Science & Applications. 2018, 7: 17168.

【4】Zhou B Q, Lei G Q, Chen L L, et al. Noise suppression for the detection laser of a nuclear magnetic resonance gyroscope based on a liquid crystal variable retarder [J]. Chinese Optics Letters. 2017, 15(8): 082302.

【5】Chen H X, Sui Z, Chen Z P, et al. Laser beam shaping using liquid crystal spatial light modulator [J]. Acta Optica Sinica. 2001, 21(9): 1107-1111.
陈怀新, 隋展, 陈祯培, 等. 采用液晶空间光调制器进行激光光束的空间整形 [J]. 光学学报. 2001, 21(9): 1107-1111.

【6】Liu X F, Peng L P, Zhao Y A, et al. Research progress on near-infrared high-power laser damage of liquid crystal optical devices [J]. Chinese Journal of Lasers. 2020, 47(1): 0100002.
刘晓凤, 彭丽萍, 赵元安, 等. 液晶光学器件的近红外激光损伤研究进展 [J]. 中国激光. 2020, 47(1): 0100002.

【7】Yang L, Wang M S, Xu G Q, et al. Design and optimization of low voltage driving variable focal length liquid crystal lens [J]. Acta Optica Sinica. 2017, 37(9): 0922003.
杨兰, 王敏帅, 徐恭勤, 等. 低电压驱动液晶变焦透镜的设计与优化 [J]. 光学学报. 2017, 37(9): 0922003.

【8】Shen C, Wei S, Yu H X, et al. Model of liquid crystal on silicon device with sub-wavelength grating structure [J]. Acta Optica Sinica. 2020, 40(3): 0305001.
沈川, 韦穗, 虞海秀, 等. 基于亚波长光栅结构的硅基液晶器件模型研究 [J]. 光学学报. 2020, 40(3): 0305001.

【9】Li J X, Liu Q, Zhou J Q, et al. Optimal design for broadband polarization state analyzer of ferroelectric liquid crystal [J]. Acta Optica Sinica. 2017, 37(7): 0726002.
李建欣, 刘勤, 周建强, 等. 宽波段铁电液晶偏振态分析器的优化设计 [J]. 光学学报. 2017, 37(7): 0726002.

【10】Ghosh G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals [J]. Optics Communications. 1999, 163(1/2/3): 95-102.

【11】?zcan S, Co?kun E, Kocahan ?, et al. An improved method for the determination of birefringence dispersion of liquid crystal cell: , 2016, 1722(1): 090002.

【12】Li K W, Wang Z B, Zhang R, et al. Study of birefringence dispersion based on liquid crystal variable retarder [J]. Chinese Journal of Lasers. 2015, 42(1): 0108001.
李克武, 王志斌, 张瑞, 等. 液晶可变延迟器的双折射色散研究 [J]. 中国激光. 2015, 42(1): 0108001.

【13】Vuks M F. Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals [J]. Optics and Spectroscopy. 1966, 20: 361.

【14】Wu S T. Birefringence dispersions of liquid crystals [J]. Physical Review A. 1986, 33(2): 1270-1274.

【15】Wu S, Wu C. A three-band model for liquid-crystal birefringence dispersion [J]. Journal of Applied Physics. 1989, 66(11): 5297-5301.

【16】Wu S T, Wu C, Warenghem W, et al. Refractive index dispersions of liquid crystals [J]. Proceedings of SPIE. 1992, 1815: 179-187.

【17】Li J, Wu S. Extended Cauchy equations for the refractive indices of liquid crystals [J]. Journal of Applied Physics. 2004, 95(3): 896-901.

【18】Li J, Wu S, Brugioni S, et al. Infrared refractive indices of liquid crystals [J]. Journal of Applied Physics. 2005, 97(7): 073501.

【19】Li J, Wu S. Two-coefficient Cauchy model for low birefringence liquid crystals [J]. Journal of Applied Physics. 2004, 96(1): 170-174.

【20】Stoumbou E, Stavrakas I, Hloupis G, et al. A comparative study on the use of the extended-Cauchy dispersion equation for fitting refractive index data in crystals [J]. Optical and Quantum Electronics. 2013, 45(8): 837-859.

【21】Heshmati S, Taleb H, Rahmani A. Complex Sellmeier equation for the refractive index of semiconductors in the opaque region [J]. Optik. 2018, 172: 851-854.

【22】Zhai N X, Li Y, Zhang G C, et al. Temperature-dependent Sellmeier equations of nonlinear optical crystal La2CaB10O19 [J]. Optics Express. 2013, 21(18): 20641-20648.

【23】Wang J G. Dispersion characteristics of liquid crystal tunable retarder [J]. Chinese Journal of Liquid Crystals and Displays. 2013, 28(4): 556-560.
王建国. 液晶可调相位延迟器的色散特性研究 [J]. 液晶与显示. 2013, 28(4): 556-560.

【24】Schubert M, Woollam J A, Johs B, et al. Extension of rotating-analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO2 [J]. Journal of the Optical Society of America A. 1996, 13(4): 875-883.

【25】Wu S, Ramos E, Finkenzeller U. Polarized UV spectroscopy of conjugated liquid crystals [J]. Journal of Applied Physics. 1990, 68(1): 78-85.

引用该论文

Liu Tiecheng,Hu Jingpei,Zhu Linglin,Zhou Ruyi,Zhang Chong,Zeng Aijun,Huang Huijie. Experimental Study on Birefringence Dispersion for Liquid Crystal Mixture by Sellmeier Model[J]. Chinese Journal of Lasers, 2020, 47(8): 0804002

刘铁诚,胡敬佩,朱玲琳,周如意,张冲,曾爱军,黄惠杰. Sellmeier模型表征混合液晶双折射率色散的实验研究[J]. 中国激光, 2020, 47(8): 0804002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF