首页 > 论文 > 激光与光电子学进展 > 57卷 > 7期(pp:71403--1)

基于ASE泵浦的1.7 μm波段可调谐多波长拉曼光纤激光器实验研究

1.7 μm Tunable Multi-Wavelength Raman Fiber Laser Based on Amplified Spontaneous Emission Pump

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了一种输出波长为1.7 μm波段的可调谐多波长拉曼光纤激光器。该激光器采用过滤的1550 nm波段自发辐射源来作为泵浦源,从而避免受激布里渊散射。高非线性光纤和色散位移光纤作为非线性增益介质,从而获得峰值波长为1.7 μm波段的增益谱。并采用一段未泵浦的掺铒光纤用于吸收增益谱中残余的泵浦光,所产生的增益谱由Sagnac环滤波器进行滤波。通过调节偏振控制器和放大自发辐射后端的可调谐滤波器,可以产生在1652.77 nm和1686.20 nm之间具有调谐范围大于33.4 nm的单波长激光输出。单波长激光器的光谱3 dB有效线宽为0.08 nm。并且通过增加泵浦功率和调节Sagnac环滤波器实现多波长激光输出,双波长激光可以在1654.88 nm到1664.60 nm之间连续调谐。单波长和双波长激光的边模抑制比均大于45 dB。

Abstract

A simple tunable multi-wavelength Raman fiber laser with output wavelength near 1.7 μm band is proposed and experimentally demonstrated. In this scheme, a 1550 nm band amplified spontaneous emission is used as the pump source and avoid stimulated Brillouin scattering. The dispersion shifted fiber and high nonlinear optical fiber are used as nonlinear gain to obtain the gain spectrum with peak wavelength near the 1.7 μm band, and an unpumped erbium-doped fiber is used to absorb the remaining pump light in the gain spectrum. The gain spectrum is filtered by a Sagnac loop filter. We demonstrate the tuning capacities of single-wavelength over 33.4 nm between 1652.77 nm and 1686.20 nm by adjusting the polarization controller and tunable filter on the back end of the amplified spontaneous emission. The 3 dB effective linewidth of single-wavelength laser is 0.08 nm. And by increasing the pump power and adjusting the Sagnac loop filter to achieve multi-wavelength laser output, the dual-wavelength laser can be continuously tuned between 1654.88 nm to 1664.60 nm. The side mode suppression ratios of single-wavelength and dual-wavelength lasers are greater than 45 dB.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248

DOI:10.3788/LOP57.071403

所属栏目:激光器与激光光学

基金项目:国家自然科学基金、吉林省优秀青年人才基金、吉林省自然科学基金项目、吉林省教育厅基金项目;

收稿日期:2019-09-19

修改稿日期:2019-11-26

网络出版日期:2020-04-01

作者单位    点击查看

贺振兴:长春理工大学空间光电技术国家和地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
张鹏:长春理工大学空间光电技术国家和地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
吴迪:长春理工大学空间光电技术国家和地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
韩科选:长春理工大学空间光电技术国家和地方联合工程研究中心, 吉林 长春 130022长春理工大学材料科学与工程学院, 吉林 长春 130022
李晓燕:长春理工大学空间光电技术国家和地方联合工程研究中心, 吉林 长春 130022
都权力:长春理工大学空间光电技术国家和地方联合工程研究中心, 吉林 长春 130022

联系人作者:张鹏(zhangpeng@cust.edu.cn)

备注:国家自然科学基金、吉林省优秀青年人才基金、吉林省自然科学基金项目、吉林省教育厅基金项目;

【1】Sharma U, Chang E W, Yun S H. Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth [J]. Optics Express. 2008, 16(24): 19712-19723.

【2】Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser [J]. Optics & Laser Technology. 2012, 44(7): 2095-2099.

【3】Quimby R S, Shaw L B, Sanghera J S, et al. Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm [J]. IEEE Photonics Technology Letters. 2008, 20(2): 123-125.

【4】Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy . [C]∥19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology (ACOFT). Engineers Australia. 2014, 410.

【5】Nishizawa N, Kawagoe H, Yamanaka M, et al. Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2019, 25(1): 1-15.

【6】Bajraszewski T, Wojtkowski M, Szkulmowski M, et al. Improved spectral optical coherence tomography using optical frequency comb [J]. Optics Express. 2008, 16(6): 4163-4176.

【7】Jung E J, Park J S, Jeong M Y, et al. Spectrally-sampled OCT for sensitivity improvement from limited optical power [J]. Optics Express. 2008, 16(22): 17457-17467.

【8】Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser [J]. Optics Letters. 2004, 29(13): 1503-1505.

【9】Khegai A M, Melkumov M A, Riumkin K E, et al. Mode-locked bismuth fiber laser operating at 1.7 μm based on NALM . [C]∥Laser Congress 2017 (ASSL, LAC), Nagoya, Aichi. Washington, D.C.: OSA. 2017, JTu2A: 20.

【10】Casula R, Penttinen J P, et al. Cascaded crystalline Raman lasers for extended wavelength coverage: continuous-wave, third-Stokes operation [J]. Optica. 2018, 5(11): 1406-1413.

【11】Liu J, Shen D Y, Huang H T, et al. High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings [J]. Optics Express. 2014, 22(6): 6605.

【12】Zhang L, Jiang H W, Yang X Z, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser [J]. Scientific Reports. 2017, 7: 42611.

【13】Zhang L, Dong J Y, Feng Y. High-power and high-order random Raman fiber lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2018, 24(3): 1-6.

【14】Dong J Y, Zhang L, Jiang H W, et al. High order cascaded Raman random fiber laser with high spectral purity [J]. Optics Express. 2018, 26(5): 5275-5280.

【15】Wu D, Zhang P, Li X Y, et al. Broadband light source at 1.7 μm based on cascaded-modulator pumping [J]. Chinese Journal of Lasers. 2019, 46(5): 0506003.
吴迪, 张鹏, 李晓燕, 等. 基于级联调制器抽运源的1.7 μm波段宽带光源 [J]. 中国激光. 2019, 46(5): 0506003.

【16】Du Q L, Zhang P, Wu D, et al. Raman gain spectrum in 1.7 μm band pumped by multimode laser [J]. Laser & Optoelectronics Progress. 2017, 54(12): 121405.
都权力, 张鹏, 吴迪, 等. 基于多模激光抽运的1.7 μm波段拉曼增益谱实验研究 [J]. 激光与光电子学进展. 2017, 54(12): 121405.

【17】Kuang Q Q, Zhan L, Gu Z C, et al. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser [J]. Journal of Lightwave Technology. 2015, 33(2): 391-395.

【18】Agrawal G. Nonlinear fiber optics[M]. Jia D F: Ge C F, Transl. 5th ed. Beijing: Electronic Industry Press, 2014, 205-208.
阿戈沃·戈文德, [M]. 非线性光纤光学. 贾东方: 葛春峰, 译. 5版. 北京: 电子工业出版社, 2014, 205-208.

【19】Chang C H, Peng P C, Shiu R K, et al. Multiwavelength laser with adjustable ultranarrow wavelength spacing [J]. IEEE Photonics Journal. 2016, 8(4): 1-7.

【20】Jin P X, Lu H D, Yin Q W, et al. Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2018, 24(5): 1-5.

【21】Feng S C, Ren W H, Chen M Y, et al. Multi-wavelength fiber laser employing twin-core fiber filter and nonlinear polarization rotation [J]. Chinese Journal of Lasers. 2014, 41(6): 0605006.
冯素春, 任文华, 陈曼雅, 等. 基于双芯光纤滤波器和非线性偏振旋转效应的多波长光纤激光器 [J]. 中国激光. 2014, 41(6): 0605006.

【22】Gu J B, Zhu F N, Liu L, et al. 1550 nm laser source with narrow linewidth and high tuning bandwidth [J]. Chinese Journal of Lasers. 2019, 46(9): 0901003.
古建标, 朱福南, 刘磊, 等. 1550 nm波段窄线宽高调谐带宽激光光源 [J]. 中国激光. 2019, 46(9): 0901003.

【23】Zhu X J, Geng J, Zhang G A, et al. Tunable double pulse dissipative solitons Yb-doped fiber laser based on sagnac loop [J]. Acta Optica Sinica. 2019, 39(4): 0414002.
朱晓军, 耿健, 章国安, 等. 基于Sagnac环的可调谐双脉冲耗散孤子掺Yb光纤激光器 [J]. 光学学报. 2019, 39(4): 0414002.

【24】Dong P, Gui L L, Xiao X S, et al. Experimental investigation of supercontinuum generation in highly nonlinear dispersion-shifted fiber pumped by spectrum-sliced amplified spontaneous emission [J]. Optics Communications. 2009, 282(14): 3007-3011.

【25】Takushima Y. High average power, depolarized super-continuum generation using a 1.55 μm ASE noise source [J]. Optics Express. 2005, 13(15): 5871-5877.

【26】Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering [J]. Applied Optics. 1972, 11(11): 2489-2494.

【27】Fang X J, Claus R O. Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer [J]. Optics Letters. 1995, 20(20): 2146-2148.

【28】Kim R K, Han Y G. Switchable multiple lasing oscillations in an erbium-doped fiber ring laser using a single stage of a Sagnac loop mirror [J]. Applied Physics B. 2011, 103(4): 813-818.

引用该论文

He Zhenxing,Zhang Peng,Wu Di,Han Kexuan,Li Xiaoyan,Du Quanli. 1.7 μm Tunable Multi-Wavelength Raman Fiber Laser Based on Amplified Spontaneous Emission Pump[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071403

贺振兴,张鹏,吴迪,韩科选,李晓燕,都权力. 基于ASE泵浦的1.7 μm波段可调谐多波长拉曼光纤激光器实验研究[J]. 激光与光电子学进展, 2020, 57(7): 071403

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF