首页 > 论文 > 强激光与粒子束 > 32卷 > 8期(pp:85002-85002)

磁驱动飞片发射实验结构系数初步研究

Structure coefficient in magnetically driven flyer plate experiment

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了确定磁驱动飞片发射实验结构系数的范围、影响因素、结构系数与影响因素的关系,对聚龙一号装置上的磁驱动飞片发射实验进行了数值模拟和分析。数值模拟表明,磁流体力学程序能正确模拟聚龙一号装置上各个磁驱动飞片发射实验;磁驱动双侧飞片发射实验的结构系数为0.7~0.8;磁驱动单侧飞片发射实验的结构系数为0.80~0.85。磁驱动飞片发射实验的结构系数与实验加载电流无关,仅由磁驱动飞片发射实验的负载结构决定。磁驱动飞片发射实验的结构系数取决于阴阳电极极板的初始宽度、阴阳电极之间的初始间隙以及阴阳电极上飞片厚度之和等三个因素。在磁驱动飞片发射实验中,电极初始宽度、阴阳电极之间的初始间隙不变的情况下,结构系数由阴阳电极上飞片厚度之和确定,阴阳电极上飞片厚度之和越大,结构系数越大。

Abstract

To determine the range and the influence factor of structure coefficient and, the relation between structure coefficient and influence factor, numerical simulations and analysis of magnetically driven flyer plate experiments on PTS facility are carried out. The numerical simulations show that the magneto-hydrodynamic code can correctly simulate each magnetically driven flyer plate experiment on PTS facility. The structure coefficient of magnetically driven two-sided flyer plate experiment is about 0.7-0.8 and the structure coefficient of one-sided experiment is about 0.80-0.85. The structure coefficient is independent of the measured experimental current, and only determined by the initial structure of experiment load. The structure coefficient is related to the initial widths of anode and cathode, the initial gap between anode and cathode, and the sum of depths of flyer plates on anode and cathode. When the initial widths of anode and cathode and the initial gap between anode and cathode are fixed, the greater sum depths of flyer plates on anode and cathode, the greater the structure coefficient of magnetically driven flyer plate experiment.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:O361.3

DOI:10.11884/HPLPB202032.200072

所属栏目:脉冲功率技术

基金项目:国家自然科学基金项(11605189,11672276)

收稿日期:2020-03-20

修改稿日期:--

网络出版日期:2020-11-12

作者单位    点击查看

阚明先:中国工程物理研究院 流体物理研究所,四川 绵阳 621900
段书超:中国工程物理研究院 流体物理研究所,四川 绵阳 621900
王刚华:中国工程物理研究院 流体物理研究所,四川 绵阳 621900
肖波:中国工程物理研究院 流体物理研究所,四川 绵阳 621900
赵海龙:中国工程物理研究院 流体物理研究所,四川 绵阳 621900

备注:国家自然科学基金项目(11605189,11672276)

【1】M D Knudson, R W Lemke and D B Hayes. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. Journal of Applied Physics. 94(7), 4420-4431(2003).

【2】R W Lemke, M D Knudson and D E Bliss. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments. Journal of Applied Physics. 98, (2005).

【3】R W Lemke, M D Knudson and J P Davis. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator. International Journal of Impact Engineering. 38(6), 480-485(2011).

【4】M D Knudson, D L Hanson and J E Bailey. Equation of state measurements in liquid deuterium to 70 GPa. Physical Review Letters. 87, (2001).

【5】M D Knudson, D L Hanson and J E Bailey. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. Physical Review Letters. 90, (2003).

【6】M D Knudson, D L Hanson and J E Bailey. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques. Physical Review B. 69, (2004).

【7】D B Reisman, A Toor and R C Cauble. Magnetically driven isentropic compression experiments on the Z accelerator. Journal of Applied Physics. 89(3), 1625-1633(2001).

【8】R W Lemke, M D Knudson and C A Hall. Characterization of magnetically accelerated flyer plates. Physics of Plasmas. 10(4), 1092-1099(2003).

【9】J P Davis, J L Brown and M D Knudson. Analysis of shockless dynamic compression data on solids to multimegabar pressure: application to tantalum. Journal of Applied Physics. 116, (2014).

【10】Mingxian Kan, Zhaohui Zhang and Bo Xiao. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula. High Energy Density Physics. 26, 38-43(2018).

【11】阚明先, 王刚华, 肖波磁驱动单侧飞片实验的数值模拟研究. 爆炸与冲击. 40, (2020).

【12】Jianjun Deng, Weiping Xie and Shuping Feng. Initial performance of the Primary Test Stand. IEEE TPS. 41(10), 2580-2583(2013).

【13】杨龙, 王刚华, 阚明先基于MDSC程序的Z箍缩内爆单温和三温模拟分析. 高压物理学报. 30(1), 64-70(2016).

【14】阚明先, 张朝辉, 段书超“聚龙一号”装置上磁驱动铝飞片实验的数值模拟. 强激光与粒子束. 27, (2015).

【15】王贵林, 张朝辉, 郭帅聚龙一号装置上铜的准等熵压缩线实验测量研究. 强激光与粒子束. 28, (2016).

【16】阚明先, 杨龙, 段书超聚龙一号装置上磁驱动铝飞片发射实验的数值分析与再设计. 爆炸与冲击. 37(5), 793-798(2017).

【17】阚明先, 蒋吉昊, 王刚华套筒内爆ALE方法二维MHD数值模拟. 四川大学学报. 44(1), 91-96(2007).

【18】阚明先, 王刚华, 赵海龙磁驱动飞片二维磁流体力学数值模拟. 强激光与粒子束. 25(8), 2137-2141(2013).

【19】阚明先, 王刚华, 肖波二维弹塑性磁流体力学数值模拟. 强激光与粒子束. 30, (2018).

【20】阚明先, 段书超, 张朝辉二维磁驱动数值模拟程序MDSC2的验证与确认. 强激光与粒子束. 31, (2019).

【21】阚明先, 王刚华, 赵海龙金属电阻率模型. 爆炸与冲击. 33(3), 282-286(2013).

引用该论文

Mingxian Kan,Shuchao Duan,Ganghua Wang,Bo Xiao,Hailong Zhao. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32(8): 085002

阚明先,段书超,王刚华,肖波,赵海龙. 磁驱动飞片发射实验结构系数初步研究[J]. 强激光与粒子束, 2020, 32(8): 085002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF