首页 > 论文 > 中国激光 > 47卷 > 8期(pp:811003--1)

基于离轴积分腔输出光谱的深海可燃冰探测技术

Detection of Methane Hydrate in Deep Sea Based on Off-Axis Integrated Cavity Output Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

可燃冰是一种清洁无污染的新型能源。为了对可燃冰资源进行深海连续走航勘探,膜分离-离轴积分腔输出光谱联用技术(M-ICOS)被应用于海水溶解CH4和CO2气体的探测。M-ICOS系统由膜分离单元、腔内温度压力控制单元、光腔、光谱测量单元和工业计算机等组成。实验研究发现,该系统的温度和压力控制精度分别为0.0003733 ℃和0.6799 Pa,CH4检测极限为0.56×10 -9,CO2检测极限为0.62×10 -6。利用M-ICOS系统在南海神狐海域进行了实地测量实验,实验发现,在海面下500~700 m处,水中溶解的CH4和CO2浓度有剧烈的波动,这可能是由于此处海流携带了海底可燃冰富集区域释放的高浓度溶解气体。M-ICOS系统具有良好的灵敏度和稳定性,能够在深海恶劣条件下对海水溶解CH4和CO2进行探测,从而实现对可燃冰资源的连续走航勘探。

Abstract

Methane hydrate is a new clean energy source. For the cruise detection of methane hydrate, membrane separation off-axis integrated cavity output spectroscopy, M-ICOS, is applied to detect dissolved methane (CH4) and carbon dioxide (CO2). An M-ICOS system comprises a membrane separation unit, a cavity temperature and pressure controller, an optical cavity, a spectrometer unit, and an industrial personal computer. The M-ICOS system is tested for performance evaluation. The accuracies of the temperature and pressure controller are 0.0003733 ℃ and 0.6799 Pa, respectively. The limits of detection of CH4 and CO2 are 0.56×10 -9 and 0.62×10 -6, respectively. A field experiment in Shenhu area, South China Sea, found a strong fluctuation in the gas concentration at the depth of 500--700 m, which was probably because the sea flow took high concentration gas from the methane hydrate enrichment area. Experimental results reveal that the system exhibits a good sensitivity and stability, which make it usable to detect CH4 and CO2 in deep sea for cruise detection of the methane hydrate.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.1

DOI:10.3788/CJL202047.0811003

所属栏目:光谱学

基金项目:国家重点研发计划;

收稿日期:2020-03-13

修改稿日期:2020-04-08

网络出版日期:2020-08-01

作者单位    点击查看

董洋:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
王静静:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学环境与光电技术学院, 安徽 合肥 230026
周心禺:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
朱公栋:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
曲康:中国地质大学(武汉)海洋学院, 湖北 武汉 430074
吴祥恩:中国地质大学(武汉)海洋学院, 湖北 武汉 430074
吕万军:中国地质大学(武汉)海洋学院, 湖北 武汉 430074
温明明:中国地质调查局广州海洋地质调查局, 广东 广州 510075
谈图:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
刘锟:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
高晓明:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026中国科学技术大学环境与光电技术学院, 安徽 合肥 230026

联系人作者:高晓明(xmgao@aiofm.ac.cn)

备注:国家重点研发计划;

【1】Chong Z R. Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges [J]. Applied Energy. 2016, 162: 1633-1652.

【2】Liu C L, Meng Q G, He X L, et al. Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China [J]. Journal of Geochemical Exploration. 2015, 152: 67-74.

【3】Trung N N. The gas hydrate potential in the South China Sea.Journal of Petroleum Science, Engineering[J]. 2012, 88/89: 41-47.

【4】Yoshida O, Inoue H Y, Watanabe S, et al. Dissolved methane distribution in the South Pacific and the Southern Ocean in austral summer [J]. Journal of Geophysical Research: Oceans. 2011, 116(C7): C7008.

【5】Xu C L. In situ observation of methane seepage in the South China Sea [D]. Qingdao: Ocean University of China. 2013, 39-41.
徐翠玲. 南海冷泉区甲烷渗漏过程的原位观测研究 [D]. 青岛: 中国海洋大学. 2013, 39-41.

【6】Yang H N, Chen N, Chen J. Measurement of low-concentration water vapor based on off-axis integrated cavity absorption spectroscopy [J]. Acta Optica Sinica. 2018, 38(2): 191-196.
杨荟楠, 陈宁, 陈军. 基于离轴积分腔吸收光谱技术的低浓度水蒸气测量 [J]. 光学学报. 2018, 38(2): 191-196.

【7】Tian X, Cao Y, Wang J J, et al. High sensitivity detection of two-component CH4/H2O based on off-axis cavity enhanced absorption spectroscopy [J]. Spectroscopy and Spectral Analysis. 2019, 39(10): 3078-3083.
田兴, 曹渊, 王静静, 等. 基于离轴腔增强吸收光谱双组分CH4/H2O高灵敏度探测研究 [J]. 光谱学与光谱分析. 2019, 39(10): 3078-3083.

【8】Han L, Xia H, Dong F Z, et al. Progress and application of cavity enhanced absorption spectroscopy technology [J]. Chinese Journal of Lasers. 2018, 45(9): 0911003.
韩荦, 夏滑, 董凤忠, 等. 腔增强吸收光谱技术研究进展及其应用 [J]. 中国激光. 2018, 45(9): 0911003.

【9】Jia L Q, Qi H N, Hu W J, et al. Rapid nondestructive grading detection of maize seed vigor using TDLAS technique [J]. Chinese Journal of Lasers. 2019, 46(9): 0911002.
贾良权, 祁亨年, 胡文军, 等. 采用TDLAS技术的玉米种子活力快速无损分级检测 [J]. 中国激光. 2019, 46(9): 0911002.

【10】Zang Y P, Nie W, Xu Z Y, et al. Measurement of trace water vapor based on tunable diode laser absorption spectroscopy [J]. Acta Optica Sinica. 2018, 38(11): 385-390.
臧益鹏, 聂伟, 许振宇, 等. 基于可调谐二极管激光吸收光谱的痕量水汽测量 [J]. 光学学报. 2018, 38(11): 385-390.

【11】Baer D S, Paul J B, Gupta M, et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy [J]. Applied Physics B. 2002, 75(2/3): 261-265.

【12】Gonzalez-Valencia R, Magana-Rodriguez F, Gerardo-Nieto O, et al. In situ measurement of dissolved methane and carbon dioxide in freshwater ecosystems by off-axis integrated cavity output spectroscopy [J]. Environmental Science & Technology. 2014, 48(19): 11421-11428.

【13】Wankel S D, Huang Y W, Gupta M, et al. Characterizing the distribution of methane sources and cycling in the deep sea via in situ stable isotope analysis [J]. Environmental Science & Technology. 2013, 47(3): 1478-1486.

【14】Michel A P M, Wankel S D, Kapit J, et al. In situ carbon isotopic exploration of an active submarine volcano [J]. Deep Sea Research. 2018, 150: 57-66.

【15】Wang J J, Tian X, Dong Y, et al. Enhancing off-axis integrated cavity output spectroscopy (OA-ICOS) with radio frequency white noise for gas sensing [J]. Optics Express. 2019, 27(21): 30517-30529.

【16】Paul J B, Lapson L, Anderson J G. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment [J]. Applied Optics. 2001, 40(27): 4904-4910.

【17】Sayres D S, Moyer E J, Hanisco T F, et al. A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere [J]. The Review of Scientific Instruments. 2009, 80(4): 044102.

【18】Xu D. The study and application of integrated cavity based on 1392 nm with high sensitivity [D]. Nanchang: Nanchang Hangkong University. 2017, 26-27.
徐冬. 基于1392 nm高灵敏度积分腔的研究及应用 [D]. 南昌: 南昌航空大学. 2017, 26-27.

引用该论文

Dong Yang,Wang Jingjing,Zhou Xinyu,Zhu Gongdong,Qu Kang,Wu Xiang''en,Lü Wanjun,Wen Mingming,Tan Tu,Liu Kun,Gao Xiaoming. Detection of Methane Hydrate in Deep Sea Based on Off-Axis Integrated Cavity Output Spectroscopy[J]. Chinese Journal of Lasers, 2020, 47(8): 0811003

董洋,王静静,周心禺,朱公栋,曲康,吴祥恩,吕万军,温明明,谈图,刘锟,高晓明. 基于离轴积分腔输出光谱的深海可燃冰探测技术[J]. 中国激光, 2020, 47(8): 0811003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF