首页 > 论文 > 中国激光 > 46卷 > 11期(pp:1101011--1)

神光-II激光装置高精度时间同步时标系统

High-Precision Time-Synchronization Fiducial System of SG-II High-Power Laser Driver

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在使用高功率激光装置进行物理实验时,高精度时间同步的时标系统是实现物理过程精确诊断的必要条件。为了满足物理实验需求,该系统采用任意波形发生器输出信号时分复用结合高速电光调制的技术方案,同源产生了主激光、时标光、电时标和高精度触发信号等多路信号。时标系统共可输出532,355,266 nm三种波长共10路梳状时标光信号及8路梳状电时标信号、两路快前沿高幅值触发信号。时标信号与主激光时间同步抖动峰峰值达到12.80 ps,梳状时标光信号脉冲周期峰值抖动为6.40 ps,接近目前采用的测量系统极限。完成了时标系统在高功率激光装置中的应用演示,满足了诊断设备应用要求;对条纹相机不同扫程进行时间基准标定实验,可有效校准相机大扫程的时间误差。

Abstract

A high-precision time-synchronization fiducial system is necessary when using high-power laser drivers in physical experiments. To meet the demands of physical experiments, a time division multiplexing scheme based on an arbitrary waveform generator and high-speed electrooptic modulation is proposed. The time-synchronization fiducial system based on this scheme can generate multichannel signals, such as main laser, optic time fiducial lasers, electric time fiducial signals, and high-precision triggers. The proposed system can output 10 comb-shaped optic time fiducial lasers at three wavelengths, i.e., 532, 355, and 266 nm, 8 comb-shaped electric time fiducial signals, and two high-precision triggers with fast rise time and large amplitude. The peak-to-peak synchronization jitter value between the optic time fiducial laser and main laser is measured to be 12.80 ps, and the peak jitter of the optic time fiducial laser''s period is 6.40 ps, which is close to the limit of the measurement system currently in use. A demonstration experiment of this system in a high-power laser driver is implemented to confirm that the system meets diagnostics requirements. Additionally, the time reference calibration of the streak camera''s different scanning strokes is processed to effectively calibrate the time error of the camera in large sweeps.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.1101011

所属栏目:激光器件与激光物理

收稿日期:2019-05-15

修改稿日期:2019-07-23

网络出版日期:2019-11-01

作者单位    点击查看

朱浩瀚:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 上海 200444中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
汪小超:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
黄文发:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
肖助力:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
姜秀青:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
周申蕾:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
范薇:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
石志东:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 上海 200444

联系人作者:汪小超(smilexc@siom.ac.cn)

【1】Sircombe N J, Ramsay M G, Hughes S J et al. Multi-scale modelling for HEDP experiments on Orion. Journal of Physics: Conference Series. 717, (2016).

【2】Zhu J Q, Zhu J, Li X C et al. High power glass laser research progresses in NLHPLP. Proceedings of SPIE. 10084, (2017).

【3】Shaughnessy D A, Gharibyan N, Moody K J et al. Nuclear science research with dynamic high energy density plasmas at NIF. Journal of Physics: Conference Series. 717, (2016).

【4】Casner A, Caillaud T, Darbon S et al. LMJ/PETAL laser facility: overview and opportunities for laboratory astrophysics. High Energy Density Physics. 17, 2-11(2015).

【5】Caillaud T, Alozy E, Briat M et al. Recent advance in target diagnostics on the laser mégajoule (LMJ). Proceedings of SPIE. 9966, (2016).

【6】Zheng W G, Wei X F, Zhu Q H et al. Laser performance of the SG-III laser facility. High Power Laser Science and Engineering. 4, (2016).

【7】Danson C, Hillier D, Hopps N et al. Petawatt class lasers worldwide. High Power Laser Science and Engineering. 3, (2015).

【8】Goncharov V N, Regan S P, Campbell E M et al. National direct-drive program on OMEGA and the National Ignition Facility. Plasma Physics and Controlled Fusion. 59(1), (2017).

【9】Azechi H, Nakai M, Shigemori K et al. Direct-drive hydrodynamic instability experiments on the GEKKO XII laser. Physics of Plasmas. 4(11), 4079-4089(1997).

【10】Zhu J Q, Chen S H, Zheng Y X et al. Review on development of Shenguang-Ⅱ laser facility. Chinese Journal of Lasers. 46(1), (2019).
朱健强, 陈绍和, 郑玉霞 等. 神光Ⅱ激光装置研制. 中国激光. 46(1), (2019).

【11】Shiraga H, Miyanaga N, Heya M et al. Ultrafast two-dimensional X-ray imaging with X-ray streak cameras for laser fusion research (invited). Review of Scientific Instruments. 68(1), 745-749(1997).

【12】Kilkenny J D, Cable M D, Clower C A et al. Diagnostic systems for the National Ignition Facility (NIF) (invited). Review of Scientific Instruments. 66(1), 288-295(1995).

【13】Khan S F, Bell P M, Bradley D K et al. Measuring X-ray burn history with the streaked polar instrumentation for diagnosing energetic radiation (SPIDER) at the National Ignition Facility (NIF). Proceedings of SPIE. 8505, (2012).

【14】Oertel J A, Aragonez R, Archuleta T et al. Gated X-ray detector for the National Ignition Facility[J]. 77(10): 10E308. (2006).

【15】Kimbrough J R, Bell P M, Bradley D K et al. 81(10): 10E530. framing cameras. Review of Scientific Instruments. (2010).

【16】Cao Z R, Yuan Z, Chen T et al. Progress and plans of X-ray temporal and spatial diagnosis technology of Shenguang facilities. Scientia Sinica(Physica,Mechanica & Astronomica). 48(6), (2018).
曹柱荣, 袁铮, 陈韬 等. 神光装置上X射线时空诊断技术概况与展望. 中国科学: 物理学力学天文学. 48(6), (2018).

【17】Babushkin A, Seka W D, Letzring S A et al. Multicolor fiducial laser for streak cameras and optical diagnostics for the OMEGA laser system. Proceedings of SPIE. 2869, 540-544(1997).

【18】Homoelle D, Bowers M, Browning D et al. A compact UV timing fiducial system for use with X-ray streak cameras at NIF. Proceedings of SPIE. 8505, (2012).

【19】Drouet V, Prat M, Raybaut P et al. LMJ timing and fiducial system: overview of the global architecture and performances. [C]∥2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, April 12-16, 2015, Denver, CO, USA. New York: IEEE. 15278076, (2015).

【20】Schiano Y, Bar E, Richard A et al. Time fiducial on the LIL facility at CEA/CESTA. Proceedings of SPIE. 6584, (2007).

【21】Zhang R, Tian X C, Zhou D D et al. Research of time fiducial laser and probe laser of velocity interferometer system for any reflector for Shenguang-III laser facility. Acta Physica Sinica. 65(2), (2016).
张锐, 田小程, 周丹丹 等. 神光-III激光装置时标激光和任意反射面速度干涉仪探针光源产生技术. 物理学报. 65(2), (2016).

【22】Lian F Q, Fan Z W, Bai Z A et al. A Nd∶YAG regenerative amplifier seeded by 1064 nm picosecond fiber. Acta Physica Sinica. 63(13), (2014).
连富强, 樊仲维, 白振岙 等. 基于1064 nm光纤皮秒种子源的Nd∶YAG再生放大器. 物理学报. 63(13), (2014).

【23】Cheng M Y, Wang Z H, He H J et al. Efficient third harmonic generation of 355 nm picosecond laser pulse. Acta Physica Sinica. 68(12), (2019).
程梦尧, 王兆华, 何会军 等. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报. 68(12), (2019).

【24】Marciante J R, Bittle W A and Zuegel J D. Subpicosecond jitter from a precision optical triggering and timing system without active stabilization. [C]∥2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, May 21-26, 2006, Long Beach, CA, USA. New York: IEEE. JWB28, (2006).

【25】Kucharski D and Kornegay K T. Jitter considerations in the design of a 10-Gb/s automatic gain control amplifier. IEEE Transactions on Microwave Theory and Techniques. 53(2), 590-597(2005).

【26】Kurosawa N, Kobayashi H, Kogure H et al. Sampling clock jitter effects in digital-to-analog converters. Measurement. 31(3), 187-199(2002).

【27】Wang Y, Zhu J M and Miao J Y. Correction of time base error for high speed sampling oscilloscope. [C]∥2013 IEEE 11th International Conference on Electronic Measurement & Instruments, August 16-19, 2013, Harbin, China. New York: IEEE. 88-91(2013).

引用该论文

Zhu Haohan,Wang Xiaochao,Huang Wenfa,Xiao Zhuli,Jiang Xiuqing,Zhou Shenlei,Fan Wei,Shi Zhidong. High-Precision Time-Synchronization Fiducial System of SG-II High-Power Laser Driver[J]. Chinese Journal of Lasers, 2019, 46(11): 1101011

朱浩瀚,汪小超,黄文发,肖助力,姜秀青,周申蕾,范薇,石志东. 神光-II激光装置高精度时间同步时标系统[J]. 中国激光, 2019, 46(11): 1101011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF