首页 > 论文 > Chinese Optics Letters > 18卷 > 1期(p:010201)

Coulomb potential influence in the attoclock experimental scheme [Editors' Pick]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Coulomb potential may induce a significant angular offset to the two-dimensional photoelectron momentum distributions for atoms subject to strong elliptically polarized laser fields. In the attoclock experiment, this offset usually cannot be easily disentangled from the contribution of tunneling delay and poses a main obstacle to the precise measurement of tunneling delay. Based on semiclassical calculations, here, we propose a method to extract the equivalent temporal offset induced solely by Coulomb potential (TOCP) in an attoclock experiment. Our calculations indicate that, at constant laser intensity, the TOCP shows distinctive wavelength dependence laws for different model atoms, and the ratio of the target atom’s TOCP to that of H becomes insensitive to wavelength and linearly proportional to (2Ip)?3/2, where Ip is the ionization potential of the target atom. This wavelength and Ip dependence of TOCP can be further applied to extract the Coulomb potential influence. Our work paves the way for an accurate measurement of the tunneling delay in the tunneling ionization of atoms subject to intense elliptically polarized laser fields.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/COL202018.010201

所属栏目:Atomic and Molecular Optics

基金项目:This work is supported by the National Key Research and Development Program of China (Nos. 2019YFA0307702, 2019YFA0307704, and 2016YFA0401100), the National Natural Science Foundation of China (Nos. 11974383, 11834015, 11847243, 11804374, 11874392, 11774387, 11527807, and 11425414), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB21010400).

收稿日期:2019-08-24

录用日期:2019-09-25

网络出版日期:2019-12-12

作者单位    点击查看

Zhilei Xiao:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Wei Quan:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
Songpo Xu:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Shaogang Yu:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Yanlan Wang:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
Meng Zhao:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Mingzheng Wei:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
Yu Zhou:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Xuanyang Lai:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
Jing Chen:HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, ChinaInstitute of Applied Physics and Computational Mathematics, Beijing 100088, China
Xiaojun Liu:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

联系人作者:Wei Quan(charlywing@wipm.ac.cn); Jing Chen(chen_jing@iapcm.ac.cn); Xiaojun Liu(xjliu@wipm.ac.cn);

备注:This work is supported by the National Key Research and Development Program of China (Nos. 2019YFA0307702, 2019YFA0307704, and 2016YFA0401100), the National Natural Science Foundation of China (Nos. 11974383, 11834015, 11847243, 11804374, 11874392, 11774387, 11527807, and 11425414), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB21010400).

【1】J. Du and T. Kobayshi. Coulomb potential influence in the attoclock experimental scheme. Chin. Opt. Lett. 9, (2011).J. Du and T. Kobayshi. Coulomb potential influence in the attoclock experimental scheme. Chin. Opt. Lett. 9, (2011).

【2】H. Xie, G. Li, J. Yao, W. Chu, Z. Chen and Y. Cheng. Coulomb potential influence in the attoclock experimental scheme. Chin. Opt. Lett. 16, (2018).H. Xie, G. Li, J. Yao, W. Chu, Z. Chen and Y. Cheng. Coulomb potential influence in the attoclock experimental scheme. Chin. Opt. Lett. 16, (2018).

【3】L. A. MacCollL. A. MacColl. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. 40, (1932).

【4】M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher and F. Krausz. Coulomb potential influence in the attoclock experimental scheme. Nature. 414, (2001).

【5】R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher and F. Krausz. Coulomb potential influence in the attoclock experimental scheme. Nature. 427, (2004).

【6】P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller and P. Agostini. Coulomb potential influence in the attoclock experimental scheme. Science. 292, (2001).

【7】Y. Mairesse, A. de Bohan, L. J. Frasinski, H. Merdji, L. C. Dinu, P. Monchicourt, P. Breger, M. Kova?ev, R. Ta?eb, B. Carré, H. G. Muller, P. Agostini and P. Salières. Coulomb potential influence in the attoclock experimental scheme. Science. 302, (2003).

【8】P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Sch?fler, H. G. Muller, R. D?ner and U. Keller. Coulomb potential influence in the attoclock experimental scheme. Nat. Phys. 4, (2008).

【9】P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. D?rner, H. G. Muller, M. Büttiker and U. Keller. Coulomb potential influence in the attoclock experimental scheme. Science. 322, (2008).

【10】K. J. Schafer, B. Yang, L. F. DiMauro and K. C. Kulander. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. Lett. 70, (1993).

【11】P. B. CorkumP. B. Corkum. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. Lett. 71, (1993).

【12】A. S. Landsman and U. Keller. Coulomb potential influence in the attoclock experimental scheme. Phys. Rep. 547, (2015).

【13】H. Ni, N. Eicke, C. Ruiz, J. Cai, F. Oppermann, N. I. Shvetsov-Shilovski and L.-W. Pi. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. A. 98, (2018).

【14】R. Xu, T. Liu and X. Wang. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. A. 98, (2018).

【15】I. A. Ivanov, A. S. Kheifets, J. E. Calvert, S. Goodall, X. Wang, H. Xu, A. J. Palmer, D. Kielpinski, I. V. Litvinyuk and R. T. Sang. Coulomb potential influence in the attoclock experimental scheme. Sci. Rep. 6, (2016).

【16】J. Liang, R. Zhang, X. Ma, Y. Zhou and P. Lu. Coulomb potential influence in the attoclock experimental scheme. Chin. Opt. Lett. 16, (2018).J. Liang, R. Zhang, X. Ma, Y. Zhou and P. Lu. Coulomb potential influence in the attoclock experimental scheme. Chin. Opt. Lett. 16, (2018).

【17】A. N. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M. Abu-samha, L. B. Madsen and U. Keller. Coulomb potential influence in the attoclock experimental scheme. Nat. Phys. 8, (2012).

【18】L. Torlina, F. Morales, J. Kaushal, I. Ivanov, A. Kheifets, A. Zielinski, A. Scrinzi, H. G. Muller, S. Sukiasyan, M. Ivanov and O. Smirnova. Coulomb potential influence in the attoclock experimental scheme. Nat. Phys. 11, (2015).

【19】U. S. Sainadeh, H. Xu, X. Wang, A. Atia-Tul-Noor, W. C. Wallace, N. Douguest, A. Bray, I. Ivanov, K. Bartschat, A. Kheifets, R. T. Sang and I. V. Litvinyuk. Coulomb potential influence in the attoclock experimental scheme. Nature. 568, (2019).

【20】A. S. Landsman, M. Weger, J. Maurer, R. Boge, A. Ludwig, S. Heuser, C. Cirelli, L. Gallmann and U. Keller. Coulomb potential influence in the attoclock experimental scheme. Optica. 1, (2014).

【21】N. Camus, E. Yakaboylu, L. Fechner, M. Klaiber, M. Laux, Y. Mi, K. Z. Hatsagortsyan, T. Pfeifer, C. H. Keitel and R. Moshammer. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. Lett. 119, (2017).

【22】E. Yakaboylu, M. Klaiber and K. Z. Hatsagortsyan. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. A. 90, (2014).

【23】A. W. Bray, S. Eckart and A. S. Kheifets. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. Lett. 121, (2018).

【24】M. Klaiber, E. Yakaboylu, H. Bauke, K. Z. Hatsagortsyan and C. H. Keitel. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. Lett. 110, (2013).

【25】T. Zimmermann, S. Mishra, B. R. Doran, D. F. Gordon and A. S. Landsman. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. Lett. 116, (2016).

【26】L. Guo, M. Liu, R. Lu, S. Han and J. Chen. Coulomb potential influence in the attoclock experimental scheme. Laser and Particle Beams. : Cambridge University, (2019).

【27】G. G. Paulus, W. Becker, W. Nicklich and H. Walther. Coulomb potential influence in the attoclock experimental scheme. J. Phys. B. 27, (1994).

【28】M. V. Ammosov, N. B. Delone and V. P. Krainov. Coulomb potential influence in the attoclock experimental scheme. Sov. Phys. JETP. 64, (1986).

【29】B. Hu, J. Liu and S.-G. Chen. Coulomb potential influence in the attoclock experimental scheme. Phys. Lett. A. 236, (1997).

【30】N. B. Delone and V. P. Krainov. Coulomb potential influence in the attoclock experimental scheme. J. Opt. Soc. Am. B. 8, (1991).

【31】T. Brabec, M. Y. Ivanov and P. B. Corkum. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. A. 54, (1996).

【32】J. Chen, J. Liu, L. B. Fu and W. M. Zheng. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. A. 63, (2000).

【33】L. B. Fu, J. Liu, J. Chen and S. G. Chen. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. A. 63, (2001).

【34】J. Chen, J. Liu and W. M. Zheng. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. A. 66, (2002).

【35】D. F. Ye, X. Liu and J. Liu. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. Lett. 101, (2008).

【36】X. L. Hao, G. Q. Wang, X. Y. Jia, W. D. Li, J. Liu and J. Chen. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. A. 80, (2009).

【37】M. Y. Wu, Y. L. Wang, X. J. Liu, W. D. Li, X. L. Hao and J. Chen. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. A. 87, (2013).

【38】P. B. Corkum, N. H. Burnett and F. Brunel. Coulomb potential influence in the attoclock experimental scheme. Phys. Rev. Lett. 62, (1989).

【39】C. Hofmann, A. S. Landsman and U. Keller. Coulomb potential influence in the attoclock experimental scheme. J. Mod. Opt. 66, (2019).

引用该论文

Zhilei Xiao, Wei Quan, Songpo Xu, Shaogang Yu, Yanlan Wang, Meng Zhao, Mingzheng Wei, Yu Zhou, Xuanyang Lai, Jing Chen, Xiaojun Liu, "Coulomb potential influence in the attoclock experimental scheme," Chinese Optics Letters 18(1), 010201 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF