首页 > 论文 > 中国激光 > 47卷 > 8期(pp:811001--1)

激光诱导击穿光谱中分析谱线的自适应选择方法

Adaptive Selection Method for Analytical Lines in Laser-Induced Breakdown Spectra

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光诱导击穿光谱技术具有实时在线、非接触式测量和无损分析等优点,在物质检测领域得到了广泛应用,选择合适的分析谱线是其取得良好检测效果的重要基础。结合遗传算法(GA)的全局优化能力和粒子群算法(PSO)的局部搜索能力,提出了一种从激光诱导击穿光谱的原始光谱数据中自适应选择分析谱线与内标谱线的方法,利用该方法选择的分析谱线与内标谱线对铝合金中4种主要非铝元素(Mg、Mn、Si和Fe)进行定量分析,得到的拟合优度均值为0.972,均方根误差均值为0.35%,相对标准差均值为3.53%,最后遍历其他所有分析谱线进行定量分析,并对比它们的定标性能。结果表明,利用PSO-GA搜索优化得到的分析谱线与内标谱线较PSO、GA算法获得的谱线更优。

Abstract

Laser-induced breakdown spectroscopy is widely used in the material detection field because of its advantages, including online noncontact measurement and non-destructive analysis. Selecting proper analytical lines is an important prerequisite for achieving a good detection effect. This study proposed a method for adaptively selecting analytical and internal standard lines from the original spectral data of LIBS based on the global optimization ability of the genetic algorithm (GA) and the local search ability of the particle swarm optimization (PSO) algorithm. We quantitatively analyzed four major non-aluminum elements (i.e., Mg, Mn, Si, and Fe) in aluminum alloys using the analytical and internal standard lines selected using this method. The mean values of the goodness of fit, root mean square error, and relative standard deviation are 0.972, 0.35%, and 3.53%, respectively. The results obtained by traversing all other analytical lines for a quantitative analysis and comparing their calibration performances show that the analytical and internal standard lines obtained by the PSO-GA search optimization are optimal analytical spectral lines under current experimental conditions.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.4

DOI:10.3788/CJL202047.0811001

所属栏目:光谱学

基金项目:江苏省重点研发计划、南京航空航天大学研究生创新基地开放基金;

收稿日期:2020-03-10

修改稿日期:2020-03-23

网络出版日期:2020-08-01

作者单位    点击查看

潘立剑:南京航空航天大学机电学院, 江苏 南京 210001
陈蔚芳:南京航空航天大学机电学院, 江苏 南京 210001
崔榕芳:南京航空航天大学机电学院, 江苏 南京 210001
李苗苗:南京航空航天大学机电学院, 江苏 南京 210001

联系人作者:陈蔚芳(meewfchen@nuaa.edu.cn)

备注:江苏省重点研发计划、南京航空航天大学研究生创新基地开放基金;

【1】Wang J M, Zheng H J, Zheng P C, et al. Spectral characteristics of coptis chinensis plasma induced by orthogonal re-heating double-pulse laser [J]. Chinese Journal of Lasers. 2018, 45(7): 0702006.
王金梅, 郑慧娟, 郑培超, 等. 正交再加热双脉冲激光诱导黄连等离子体的光谱特性 [J]. 中国激光. 2018, 45(7): 0702006.

【2】Zhu Z H, Li J M, Guo Y M, et al. Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy [J]. Journal of Analytical Atomic Spectrometry. 2018, 33(2): 205-209.

【3】Jiang Z W, Yan Y, Li Y, et al. Wide-range and high-precision microscopic focusing system for laser-induced breakdown spectroscopy [J]. Acta Optica Sinica. 2018, 38(12): 1215004.
蒋章伟, 燕艳, 李阳, 等. 大范围高精度激光诱导击穿光谱显微对焦系统 [J]. 光学学报. 2018, 38(12): 1215004.

【4】Rohwetter P, Yu J, Méjean G, et al. Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes [J]. Journal of Analytical Atomic Spectrometry. 2004, 19(4): 437-444.

【5】Zhou Z H, Tian X Y, Sun L X, et al. Identification ofaluminum alloy grades by fiber-laser induced breakdown spectroscopy combined with support vector machine [J]. Laser & Optoelectronics Progress. 2018, 55(6): 063002.
周中寒, 田雪咏, 孙兰香, 等. Fiber-LIBS技术结合SVM鉴定铝合金牌号 [J]. 激光与光电子学进展. 2018, 55(6): 063002.

【6】Sheng P P, Zhong S L, Sun X. Microhole sprayer assisted laser induced breakdown spectroscopy for online analysis of trace metal elements dissolved in water [J]. Chinese Journal of Lasers. 2018, 45(7): 0711002.
生鹏鹏, 钟石磊, 孙欣. 微孔喷射辅助水溶液样品激光诱导击穿光谱在线分析方法研究 [J]. 中国激光. 2018, 45(7): 0711002.

【7】Kim C K, In J H, Lee S H, et al. Influence of Ar buffer gas on the LIBS signal of thin CIGS films [J]. Journal of Analytical Atomic Spectrometry. 2013, 28(4): 460-467.

【8】Williams R M E, Grotzinger J P, Dietrich W E, et al. Martian fluvial conglomerates at Gale crater [J]. Science. 2013, 340(6136): 1068-1072.

【9】Laville S, Sabsabi M, Doucet F R. Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration [J]. Spectrochimica Acta Part B: Atomic Spectroscopy. 2007, 62(12): 1557-1566.

【10】Aydin ü, Roth P, Gehlen C D, et al. Spectral line selection for time-resolved investigations of laser-induced plasmas by an iterative Boltzmann plot method [J]. Spectrochimica Acta Part B: Atomic Spectroscopy. 2008, 63(10): 1060-1065.

【11】Kong H Y, Sun L X, Hu J T, et al. Automatic method for selecting characteristic lines based on genetic algorithm to quantify laser-induced breakdown spectroscopy [J]. Spectroscopy and Spectral Analysis. 2016, 36(5): 1451-1457.
孔海洋, 孙兰香, 胡静涛, 等. 激光诱导击穿光谱定量化标定谱线自动选择方法 [J]. 光谱学与光谱分析. 2016, 36(5): 1451-1457.

【12】Zou X H, Hao Z Q, Yi R X, et al. Quantitative analysis of soil by laser-induced breakdown spectroscopy using genetic algorithm-partial least squares [J]. Chinese Journal of Analytical Chemistry. 2015, 43(2): 181-186.
邹孝恒, 郝中骐, 易荣兴, 等. 基于遗传算法和偏最小二乘法的土壤激光诱导击穿光谱定量分析研究 [J]. 分析化学. 2015, 43(2): 181-186.

【13】Yang Y L, Wang P, Ma C H. Quantitative analysis of Mn element in liquid steel by LIBS based on particle swarm optimized support vector machine [J]. Laser & Optoelectronics Progress. 2015, 52(7): 073004.
杨友良, 王鹏, 马翠红. 基于粒子群优化支持向量机的LIBS钢液Mn元素定量分析 [J]. 激光与光电子学进展. 2015, 52(7): 073004.

【14】Zhang B, Chang S, Wang J, et al. Feature points extraction of laser vision weld seam based on genetic algorithm [J]. Chinese Journal of Lasers. 2019, 46(1): 0102001.
张斌, 常森, 王桔, 等. 基于遗传算法的激光视觉焊缝特征点提取 [J]. 中国激光. 2019, 46(1): 0102001.

【15】Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing: An International Journal. 2002, 1: 235-306.

【16】Zhang M, Zhang W, Zhang P, et al. Parameteroptimization in particle swarm algorithm for spectral shape multiplexing demodulation of fiber Bragg grating [J]. Chinese Journal of Lasers. 2019, 46(7): 0706001.
张梅, 张伟, 章鹏, 等. 光纤光栅谱形复用解调中粒子群算法的参数优化 [J]. 中国激光. 2019, 46(7): 0706001.

【17】Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation. 2002, 6(1): 58-73.

引用该论文

Pan Lijian,Chen Weifang,Cui Rongfang,Li Miaomiao. Adaptive Selection Method for Analytical Lines in Laser-Induced Breakdown Spectra[J]. Chinese Journal of Lasers, 2020, 47(8): 0811001

潘立剑,陈蔚芳,崔榕芳,李苗苗. 激光诱导击穿光谱中分析谱线的自适应选择方法[J]. 中国激光, 2020, 47(8): 0811001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF