首页 > 论文 > 光学学报 > 39卷 > 12期(pp:1206007--1)

基于还原氧化石墨烯的干涉型光纤湿度传感器

Reduced Graphene Oxide-Based Interferometric Fiber-Optic Humidity Sensor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种利用微米光纤构成的Mach-Zehnder干涉光路结构,并利用热还原方法将光纤上覆盖的氧化石墨烯(GO)膜层转变为还原氧化石墨烯(RGO)膜层,实现了以干涉峰值对应波长为传感参量的湿度传感。传感器在相对湿度(RH)为45%~95%范围内达到的最大平均灵敏度为0.2768 nm/%RH。传感器对湿度变化的响应及恢复时间分别为6 s及30 s。研究显示,传感器对湿度及温度的响应具有不同的特点。传感器在湿度传感中具有良好的时间稳定性及较好的可恢复性。这种微米光纤干涉结构以及在该型光纤上覆盖RGO膜层的工艺方法为制备干涉型石墨烯光纤传感器提供了新的思路。

Abstract

This study presents a microfiber-based Mach-Zehnder interferometric optical structure. The fiber-optic humidity sensing, which employs the wavelength corresponding to the interference peak as the sensing parameter, is realized using a thermal reduction method. The thermal reduction method changes graphene oxide (GO) film, which precovers the fiber, into a reduced graphene oxide (RGO) film. The sensor can achieve a maximum average sensitivity of 0.2768 nm/%RH in relative humidity range of 45%-95%. The response and recovery time of the sensor in humidity sensing are 6 s and 30 s, respectively. The humidity response and temperature response of the sensor exhibit different characteristics, and the sensor has good time stability and recoverability in humidity sensing. This study provides a novel interference-type graphene-based fiber-optic sensor fabrication method using the microfiber-based interference structure and process engineering that changes GO into RGO.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN25

DOI:10.3788/AOS201939.1206007

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、广东省自然科学基金、广州市科技计划、暨南大学大学生创新创业训练计划;

收稿日期:2019-06-06

修改稿日期:2019-09-02

网络出版日期:2019-12-01

作者单位    点击查看

柯伟铭:暨南大学光电工程系, 广东 广州 510632
李振华:暨南大学光电工程系, 广东 广州 510632
周智翔:暨南大学光电工程系, 广东 广州 510632
林艳梅:暨南大学光电工程系, 广东 广州 510632
肖毅:暨南大学光电工程系, 广东 广州 510632

联系人作者:肖毅(xiaoy109@sina.com)

备注:国家自然科学基金、广东省自然科学基金、广州市科技计划、暨南大学大学生创新创业训练计划;

【1】Bariáin C, Matías I R, Arregui F J, et al. Optical fiber humidity sensor based on a tapered fiber coated with agarose gel [J]. Sensors and Actuators B: Chemical. 2000, 69(1/2): 127-131.

【2】Gupta B D. A novel probe for a fiber optic humidity sensor [J]. Sensors and Actuators B: Chemical. 2001, 80(2): 132-135.

【3】Xia L, Li L C, Li W, et al. Novel optical fiber humidity sensor based on a no-core fiber structure [J]. Sensors and Actuators A: Physical. 2013, 190: 1-5.

【4】Luo Y H, Chen C Y, Xia K, et al. Tungsten disulfide (WS2) based all-fiber-optic humidity sensor [J]. Optics Express. 2016, 24(8): 8956-8966.

【5】Kronenberg P, Rastogi P K, Giaccari P, et al. Relative humidity sensor with optical fiber Bragg gratings [J]. Optics Letters. 2002, 27(16): 1385-1387.

【6】Yeo T L, Sun T. Grattan K T V, et al. Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing [J]. Sensors and Actuators B: Chemical. 2005, 110(1): 148-156.

【7】Correia S F, Antunes P, Pecoraro E, et al. Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating [J]. Sensors (Basel, Switzerland). 2012, 12(7): 8847-8860.

【8】Shivananju B N, Yamdagni S, Fazuldeen R, et al. Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing [J]. IEEE Sensors Journal. 2014, 14(8): 2615-2619.

【9】Korenko B, Rothhardt M, Hartung A, et al. Novel fiber-optic relative humidity sensor with thermal compensation [J]. IEEE Sensors Journal. 2015, 15(10): 5450-5454.

【10】Swanson A J, Raymond S G, Janssens S, et al. Development of novel polymer coating for FBG based relative humidity sensing [J]. Sensors and Actuators A: Physical. 2016, 249: 217-224.

【11】Konstantaki M, Pissadakis S, Pispas S, et al. Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating [J]. Applied Optics. 2006, 45(19): 4567-4571.

【12】Liu Y, Wang L W, Zhang M, et al. Long-period grating relative humidity sensor with hydrogel coating [J]. IEEE Photonics Technology Letters. 2007, 19(12): 880-882.

【13】Venugopalan T, Sun T. Grattan K T V. Long period grating-based humidity sensor for potential structural health monitoring [J]. Sensors and Actuators A: Physical. 2008, 148(1): 57-62.

【14】Fu M Y, Lin G R, Liu W F, et al. Fiber-optic humidity sensor based on an air-gap long period fiber grating [J]. Optical Review. 2011, 18(1): 93-95.

【15】Urrutia A, Goicoechea J, Ricchiuti A L, et al. Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating [J]. Sensors and Actuators B: Chemical. 2016, 227: 135-141.

【16】Corres J M, Matias I R, Hernaez M, et al. Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles [J]. IEEE Sensors Journal. 2008, 8(3): 281-285.

【17】Chen L H, Li T, Chan C C, et al. Chitosan based fiber-optic Fabry-Perot humidity sensor [J]. Sensors and Actuators B: Chemical. 2012, 169: 167-172.

【18】Santos J S, Raimundo Jr. I M, Cordeiro C M B, et al. Characterisation of a Nafion film by optical fibre Fabry-Perot interferometry for humidity sensing [J]. Sensors and Actuators B: Chemical. 2014, 196: 99-105.

【19】Huang C J, Xie W J, Lee D W, et al. Optical fiber humidity sensor with porous TiO2/SiO2/TiO2 coatings on fiber tip [J]. IEEE Photonics Technology Letters. 2015, 27(14): 1495-1498.

【20】Huang C J, Xie W J, Yang M H, et al. Optical fiber Fabry-Perot humidity sensor based on porous Al2O3 film [J]. IEEE Photonics Technology Letters. 2015, 27(20): 2127-2130.

【21】Wang C L, Zhou B, Jiang H H, et al. Agarose filled Fabry-Perot cavity for temperature self-calibration humidity sensing [J]. IEEE Photonics Technology Letters. 2016, 28(19): 2027-2030.

【22】Wang J F, Liang H H, Dong X Y, et al. A temperature-insensitive relative humidity sensor by using polarization maintaining fiber-based Sagnac interferometer [J]. Microwave and Optical Technology Letters. 2013, 55(10): 2305-2307.

【23】Sun L P, Li J, Jin L, et al. High-birefringence microfiber Sagnac interferometer based humidity sensor [J]. Sensors and Actuators B: Chemical. 2016, 231: 696-700.

【24】Mathew J, Semenova Y, Farrell G. Experimental demonstration of a high-sensitivity humidity sensor based on an agarose-coated transmission-type photonic crystal fiber interferometer [J]. Applied Optics. 2013, 52(16): 3884-3890.

【25】Li T, Dong X Y, Chan C C, et al. Humidity sensor with a PVA-coated photonic crystal fiber interferometer [J]. IEEE Sensors Journal. 2013, 13(6): 2214-2216.

【26】An J L, Jin Y X, Sun M M, et al. Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers [J]. IEEE Sensors Journal. 2014, 14(8): 2683-2686.

【27】Miao Y P, Ma X X, He Y, et al. Low-temperature-sensitive relative humidity sensor based on tapered square no-core fiber coated with SiO2 nanoparticles [J]. Optical Fiber Technology. 2016, 29: 59-64.

【28】Lopez-Torres D, Elosua C, Villatoro J, et al. Enhancing sensitivity of photonic crystal fiber interferometric humidity sensor by the thickness of SnO2 thin films [J]. Sensors and Actuators B: Chemical. 2017, 251: 1059-1067.

【29】Lopez-Torres D, Elosua C, Villatoro J, et al. Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor [J]. Sensors and Actuators B: Chemical. 2017, 242: 1065-1072.

【30】Tan Y Z, Sun L P, Jin L, et al. Temperature-insensitive humidity sensor based on a silica fiber taper interferometer [J]. IEEE Photonics Technology Letters. 2013, 25(22): 2201-2204.

【31】Soltanian M R K, Sharbirin A S, Ariannejad M M, et al. . Variable waist-diameter Mach-Zehnder tapered-fiber interferometer as humidity and temperature sensor [J]. IEEE Sensors Journal. 2016, 16(15): 5987-5992.

【32】Fu H W, Jiang Y H, Ding J J, et al. Low temperature cross-sensitivity humidity sensor based on a U-shaped microfiber interferometer [J]. IEEE Sensors Journal. 2017, 17(3): 644-649.

【33】Mathew J, Semenova Y, Farrell G. Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2012, 18(5): 1553-1559.

【34】Wong W C, Chan C C, Chen L H, et al. Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement [J]. Sensors and Actuators B: Chemical. 2012, 174: 563-569.

【35】Hu P B, Dong X Y, Ni K, et al. Sensitivity-enhanced Michelson interferometric humidity sensor with waist-enlarged fiber bitaper [J]. Sensors and Actuators B: Chemical. 2014, 194: 180-184.

【36】Alvarez-Herrero A, Guerrero H, Levy D. High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers [J]. IEEE Sensors Journal. 2004, 4(1): 52-56.

【37】Zamarre?o C R. Hernaez M, del Villar I, et al. Tunable humidity sensor based on ITO-coated optical fiber [J]. Sensors and Actuators B: Chemical. 2010, 146(1): 414-417.

【38】Rivero P J, Urrutia A, Goicoechea J, et al. Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles [J]. Sensors and Actuators B: Chemical. 2012, 173: 244-249.

【39】Ascorbe J, Corres J M, Matias I R, et al. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances [J]. Sensors and Actuators B: Chemical. 2016, 233: 7-16.

【40】Xiao Y, Zhang J, Cai X, et al. Fiber-optic humidity sensing based on graphene [J]. Acta Optica Sinica. 2015, 35(4): 0406005.
肖毅, 张军, 蔡祥, 等. 基于石墨烯的光纤湿度传感研究 [J]. 光学学报. 2015, 35(4): 0406005.

【41】Wang Y Q, Shen C Y, Lou W M, et al. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide [J]. Applied Physics Letters. 2016, 109(3): 031107.

【42】Wang Y Q, Shen C Y, Lou W M, et al. Fiber optic humidity sensor based on the graphene oxide/PVA composite film [J]. Optics Communications. 2016, 372: 229-234.

【43】Wang Y Q, Shen C Y, Lou W M, et al. Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide [J]. Sensors and Actuators B: Chemical. 2016, 234: 503-509.

【44】Gao R, Lu D F, Cheng J, et al. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide [J]. Sensors and Actuators B: Chemical. 2016, 222: 618-624.

【45】Huang Y M, Zhu W G, Li Z B, et al. High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film [J]. Sensors and Actuators B: Chemical. 2018, 255: 57-69.

【46】Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials. 2007, 6(9): 652-655.

【47】Ascorbe J, Corres J M, Arregui F J, et al. Recent developments in fiber optics humidity sensors [J]. Sensors (Basel, Switzerland). 2017, 17(4): 893.

引用该论文

Ke Weiming,Li zhenhua,Zhou Zhixiang,Lin Yanmei,Xiao Yi. Reduced Graphene Oxide-Based Interferometric Fiber-Optic Humidity Sensor[J]. Acta Optica Sinica, 2019, 39(12): 1206007

柯伟铭,李振华,周智翔,林艳梅,肖毅. 基于还原氧化石墨烯的干涉型光纤湿度传感器[J]. 光学学报, 2019, 39(12): 1206007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF