首页 > 论文 > 激光与光电子学进展 > 56卷 > 20期(pp:202411--1)

基于Au/Ce∶YIG/TiN结构的磁光表面等离激元共振及折射率传感器研究

Magneto-Optical Surface Plasmon Resonance and Refractive Index Sensor Based on Au/Ce∶YIG/TiN Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于Au/Ce∶YIG/TiN结构的磁光表面等离激元共振器件(MOSPR)。通过构建Au周期纳米盘、Ce∶YIG薄膜和TiN薄膜三层结构,实现Au纳米盘局域表面等离激元共振(LSPR)和TiN/Ce∶YIG界面传播型表面等离激元共振耦合,显著降低了LSPR的散射损耗,并实现了磁光效应的显著增强。MOSPR的横向磁光克尔效应(TMOKE)信号的绝对值达0.21。应用这一器件制备传感器,借助磁光氧化物的强磁光效应,可以显著提高LSPR传感器的品质因数(FoM)。基于TMOKE谱进行传感,器件的FoM可达2192.4586 RIU -1。该研究为高灵敏度、高FoM LSPR器件的制备提供了一种新思路。

Abstract

A magneto-optical surface plasmon resonance device (MOSPR) based on Au/Ce∶YIG/TiN structure is proposed. By constructing a three-layer structure which comprises the periodic Au nanodisk array, Ce∶YIG film, and TiN film, the coupling between the Au nanodisk''s localized surface plasmon resonance (LSPR) and the TiN/Ce∶YIG interface propagation surface plasmon resonance can be realized, which can significantly reduce the scattering loss of LSPR and enhance the magneto-optical effect. The absolute value of the transverse magneto-optical Kerr effect (TMOKE) of MOSPR reaches 0.21. Using the MOSPR and the strong magneto-optical effect of the magneto-optical oxide to prepare the sensor can significantly improve the figure of merit(FoM)of the LSPR sensor. Based on the TMOKE spectrum for sensing, the sensor''s FoM is up to 2192.4586 RIU -1. This research provides a new idea for the preparation of LSPR devices with high sensitivity and high FoM.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/LOP56.202411

所属栏目:“等离激元新效应与应用”专题

基金项目:国家自然科学基金面上项目、自然科学基金优青项目、科技部重点研发计划;

收稿日期:2019-01-28

修改稿日期:2019-04-25

网络出版日期:2019-10-01

作者单位    点击查看

王会丽:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 610054电子科技大学电子科学与工程学院, 四川 成都 610054
秦俊:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 610054电子科技大学电子科学与工程学院, 四川 成都 610054
康同同:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 610054电子科技大学电子科学与工程学院, 四川 成都 610054
张燕:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 610054电子科技大学电子科学与工程学院, 四川 成都 610054
聂立霞:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 610054电子科技大学电子科学与工程学院, 四川 成都 610054
艾万森:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 610054电子科技大学电子科学与工程学院, 四川 成都 610054
李艳芳:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 610054电子科技大学电子科学与工程学院, 四川 成都 610054
毕磊:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 610054电子科技大学电子科学与工程学院, 四川 成都 610054

联系人作者:毕磊(bilei@uestc.edu.cn)

备注:国家自然科学基金面上项目、自然科学基金优青项目、科技部重点研发计划;

【1】Willets K A and van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry. 58(1), 267-297(2007).

【2】Chen C D, Cheng S F, Chau L K et al. Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosensors and Bioelectronics. 22(6), 926-932(2007).

【3】Stewart M E, Mack N H, Malyarchuk V et al. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proceedings of the National Academy of Sciences. 103(46), 17143-17148(2006).

【4】Mayer K M and Hafner J H. Localized surface plasmon resonance sensors. Chemical Reviews. 111(6), 3828-3857(2011).

【5】Anker J N, Hall W P, Lyandres O et al. Biosensing with plasmonic nanosensors. 308-319(2009).

【6】Sherry L J, Chang S H, Schatz G C et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Letters. 5(10), 2034-2038(2005).

【7】Shen Y, Zhou J H, Liu T R et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nature Communications. 4, (2013).

【8】Dmitriev A, H gglund C, Chen S et al. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Letters. 8(11), 3893-3898(2008).

【9】Hatab N A, Hsueh C H, Gaddis A L et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Letters. 10(12), 4952-4955(2010).

【10】Ayareh Z, Mahmoodi S and Moradi M. Magneto-plasmonic biosensing platform for detection of glucose concentration. Optik. 178, 765-773(2019).

【11】Pryce I M, Kelaita Y A, Aydin K et al. Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano. 5(10), 8167-8174(2011).

【12】Xiao G L, Liu X G, Yang H Y et al. Refractive index sensing property based on extraordinary optical transmission of metal circular arc hole array. Acta Optica Sinica. 38(2), (2018).
肖功利, 刘小刚, 杨宏艳 等. 基于金属圆弧孔阵列强透射的折射率传感特性. 光学学报. 38(2), (2018).

【13】Cui W L, Peng W, Yu L et al. Hybrid nanodisk film for ultra-narrowband filtering, near-perfect absorption and wide range sensing. Nanomaterials. 9(3), (2019).

【14】Chen Y, Tian Y N, He L et al. Research on subwavelength metal grating/dielectric/metal hybrid waveguide sensing structure. Chinese Journal of Lasers. 45(1), (2018).
陈颖, 田亚宁, 何磊 等. 亚波长金属光栅/电介质/金属混合波导传感结构的研究. 中国激光. 45(1), (2018).

【15】Zhang S P, Bao K, Halas N J et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Letters. 11(4), 1657-1663(2011).

【16】Auguié B and Barnes W L. Collective resonances in gold nanoparticle arrays. Physical Review Letters. 101(14), (2008).

【17】Hicks E M, Zou S L, Schatz G C et al. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Letters. 5(6), 1065-1070(2005).

【18】Vecchi G, Giannini V and Gómez Rivas J. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Physical Review B. 80(20), (2009).

【19】Kravets V G, Schedin F and Grigorenko A N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Physical Review Letters. 101(8), (2008).

【20】Couture M, Brulé T, Laing S et al. High figure of merit (FoM) of Bragg modes in Au-coated nanodisk arrays for plasmonic sensing. Small. 13(38), (2017).

【21】Ameling R, Langguth L, Hentschel M et al. Cavity-enhanced localized plasmon resonance sensing. Applied Physics Letters. 97(25), (2010).

【22】Schmidt M A, Lei D Y, Wondraczek L et al. Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nature Communications. 3, (2012).

【23】Liang Y Z, Cui W L, Li L X et al. Large-scale plasmonic nanodisk structures for a high sensitivity biosensing platform fabricated by transfer nanoprinting. Advanced Optical Materials. 7(7), (2019).

【24】Zhang D Y, Zhao L, Wang X X et al. A refractive index sensor based on composite structure of dielectric grating with metal films. Acta Optica Sinica. 37(11), (2017).
张东阳, 赵磊, 王向贤 等. 一种基于介质光栅金属薄膜复合结构的折射率传感器. 光学学报. 37(11), (2017).

【25】Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Letters. 10(7), 2342-2348(2010).

【26】Lodewijks K, van Roy W, Borghs G et al. . Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Letters. 12(3), 1655-1659(2012).

【27】Gao J L. The Fano resonance and magneto-optical effects in magnetoplasmonic nanostructures. Nanjing: Nanjing University. 1-10(2014).
高锦龙. 磁等离激元纳米结构中的Fano共振和磁光效应. 南京: 南京大学. 1-10(2014).

【28】Qin J, Zhang Y, Liang X et al. Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films. ACS Photonics. 4(6), 1403-1412(2017).

【29】Bi L, Hu J J, Jiang P et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photonics. 5(12), 758-762(2011).

【30】Martín-Becerra D, Temnov V V, Thomay T et al. Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films. Physical Review B. 86(3), (2012).

【31】MacCaferri N, Gregorczyk K E et al. . Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nature Communications. 6, (2015).

【32】Xu Y, Bai P, Zhou X D et al. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Advanced Optical Materials. 7(9), (2019).

【33】Lodewijks K. Ryken J, van Roy W, et al. Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications. Plasmonics. 8(3), 1379-1385(2013).

【34】Armelles G, Cebollada A, García-Martín A et al. Magnetoplasmonics: combining magnetic and plasmonic functionalities. Advanced Optical Materials. 1(1), 10-35(2013).

【35】Chesnitskiy A V, Gayduk A E and Prinz V Y. Transverse magneto-optical Kerr effect in strongly coupled plasmon gratings. Plasmonics. 13(3), 885-889(2018).

【36】Pan T T, Cao W and Wang M. Optical properties of multi-hole periodic silver film array structure. Acta Optica Sinica. 39(1), (2019).
潘庭婷, 曹文, 王鸣. 多圆孔周期性银膜阵列结构的光学特性. 光学学报. 39(1), (2019).

【37】Ai W S, Zhou P H, Sun R Z et al. Control of resonance absorption modes for broadband infrared metamaterial absorber. IEEE Photonics Journal. 11(1), (2019).

【38】Li G Z, Shen Y, Xiao G H et al. Double-layered metal grating for high-performance refractive index sensing. Optics Express. 23(7), 8995-9003(2015).

【39】Caballero B, García-Martín A and Cuevas J C. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics. 3(2), 203-208(2016).

【40】Ren W Z, Dai Y M, Cai H B et al. Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor. Optics Express. 21(8), 10251-10258(2013).

引用该论文

Wang Huili,Qin Jun,Kang Tongtong,Zhang Yan,Nie Lixia,Ai Wansen,Li Yanfang,Bi Lei. Magneto-Optical Surface Plasmon Resonance and Refractive Index Sensor Based on Au/Ce∶YIG/TiN Structure[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202411

王会丽,秦俊,康同同,张燕,聂立霞,艾万森,李艳芳,毕磊. 基于Au/Ce∶YIG/TiN结构的磁光表面等离激元共振及折射率传感器研究[J]. 激光与光电子学进展, 2019, 56(20): 202411

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF