首页 > 论文 > Photonics Research > 8卷 > 6期(pp:986-994)

Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface [Cover Paper]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

With the recent development of the metasurface, generating an optical vortex in optical far or near fields is realized in various ways. However, to generate vortices in both the near and far fields simultaneously is still a challenge, which has great potential in the future compact and versatile photonic system. Here, a bi-channel optical vortex generator in both the near and far fields is proposed and demonstrated within a single metasurface, where the surface plasmon vortex and the far-field optical vortex can be simultaneously generated under circularly polarized light. The ability of generating vortices with arbitrary topological charges is experimentally demonstrated, which agrees well with simulations. This approach provides great freedom to integrate different vortex generators in a single device, and offers new opportunities for integrated optical communications, trapping, and other related fields.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.385099

所属栏目:Surface Optics and Plasmonics

基金项目:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Beijing Natural Science Foundation10.13039/501100004826; Foundation for the Author of National Excellent Doctoral Dissertation of China; National Program for Support of Top-notch Young Professionals;

收稿日期:2019-12-05

录用日期:2020-04-15

网络出版日期:2020-04-16

作者单位    点击查看

Qiao Jiang:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Yanjun Bao:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Jing Li:Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Lifeng Tian:Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Tong Cui:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Lin Sun:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Bowen Du:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Bowen Li:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Benfeng Bai:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Jia Wang:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Hongbo Sun:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Bo Shen:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China;Collaborative Innovation Center of Quantum Matter, Beijing, China
Han Zhang:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Feng Lin:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Xing Zhu:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Zheyu Fang:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China;Collaborative Innovation Center of Quantum Matter, Beijing, China

联系人作者:Zheyu Fang(zhyfang@pku.edu.cn)

备注:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Beijing Natural Science Foundation10.13039/501100004826; Foundation for the Author of National Excellent Doctoral Dissertation of China; National Program for Support of Top-notch Young Professionals;

【1】L. Allen, M. W. Beijersbergen, R. J. Spreeuw and J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A. 45, 8185-8189(1992).

【2】J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold and J. Courtial. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, (2002).

【3】H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur and A. E. Willner. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 39, 197-200(2014).

【4】J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur and A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics. 6, 488-496(2012).

【5】Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett and A. E. Willner. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 5, (2014).

【6】F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini and C. Barbieri. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, (2006).

【7】Z. Tong and O. Korotkova. Beyond the classical Rayleigh limit with twisted light. Opt. Lett. 37, 2595-2597(2012).

【8】L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant and K. Dholakia. Controlled rotation of optically trapped microscopic particles. Science. 292, 912-914(2001).

【9】Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill and D. G. Grier. Optical forces arising from phase gradients. Phys. Rev. Lett. 100, (2008).

【10】V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer and K. Dholakia. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett. 91, (2003).

【11】W. Y. Tsai, J. S. Huang and C. B. Huang. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Lett. 14, 547-552(2014).

【12】A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein and J. Laurat. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics. 8, 234-238(2014).

【13】M. Erhard, R. Fickler, M. Krenn and A. Zeilinger. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, (2018).

【14】N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso and Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 334, 333-337(2011).

【15】J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan and F. Capasso. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science. 340, 331-334(2013).

【16】A. V. Kildishev, A. Boltasseva and V. M. Shalaev. Planar photonics with metasurfaces. Science. 339, (2013).

【17】N. Yu and F. Capasso. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150(2014).

【18】E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham and R. W. Boyd. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, (2014).

【19】F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu and C. W. Qiu. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv. 2, (2016).

【20】A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali and A. Faraon. Planar metasurface retroreflector. Nat. Photonics. 11, 415-420(2017).

【21】M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu and F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 352, 1190-1194(2016).

【22】B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan and D. P. Tsai. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 17, 6345-6352(2017).

【23】X. J. Ni, S. Ishii, A. V. Kildishev and V. M. Shalaev. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl. 2, (2013).

【24】Y. Bao, Q. Jiang, Y. Kang, X. Zhu and Z. Fang. Enhanced optical performance of multifocal metalens with conic shapes. Light Sci. Appl. 6, (2017).

【25】S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu and D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun. 8, (2017).

【26】X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang and T. Zentgraf. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, (2012).

【27】X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong and X. Luo. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, (2016).

【28】L. L. Huang, X. Z. Chen, H. Muhlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf and S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, (2013).

【29】D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang and X. Chen. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, (2015).

【30】B. Desiatov, N. Mazurski, Y. Fainman and U. Levy. Polarization selective beam shaping using nanoscale dielectric metasurfaces. Opt. Express. 23, 22611-22618(2015).

【31】H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang and B. Lee. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 10, 529-536(2010).

【32】C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin and C. B. Huang. Creating optical near-field orbital angular momentum in a gold metasurface. Nano Lett. 15, 2746-2750(2015).

【33】F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang and X. Chen. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv. Mater. 29, (2017).

【34】M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang and C. W. Qiu. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater. 28, 2533-2539(2016).

【35】X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao and X. Luo. A planar chiral meta-surface for optical vortex generation and focusing. Sci. Rep. 5, (2015).

【36】J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao and X. Luo. Generation and detection of orbital angular momentum via metasurface. Sci. Rep. 6, (2016).

【37】L. Marrucci, C. Manzo and D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, (2006).

【38】S. Pidishety, V. Kumar and N. K. Viswanathan. Plasmon-mediated vectorial topological dipole: formation and annihilation. Opt. Lett. 37, 4233-4235(2012).

【39】X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson and S. Yu. Integrated compact optical vortex beam emitters. Science. 338, 363-366(2012).

【40】J. Liu, S. M. Li, L. Zhu, A. D. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Y. Yu, X. L. Cai and J. Wang. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl. 7, (2018).

【41】S. Pidishety, S. Pachava, P. Gregg, S. Ramachandran, G. Brambilla and B. Srinivasan. Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler. Opt. Lett. 42, 4347-4350(2017).

【42】P. Vayalamkuzhi, S. Bhattacharya, U. Eigenthaler, K. Keskinbora, C. T. Samlan, M. Hirscher, J. P. Spatz and N. K. Viswanathan. Direct patterning of vortex generators on a fiber tip using a focused ion beam. Opt. Lett. 41, 2133-2136(2016).

【43】Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu and Z. Y. Fang. Revealing the spin optics in conic-shaped metasurfaces. Phys. Rev. B. 95, (2017).

引用该论文

Qiao Jiang, Yanjun Bao, Jing Li, Lifeng Tian, Tong Cui, Lin Sun, Bowen Du, Bowen Li, Benfeng Bai, Jia Wang, Hongbo Sun, Bo Shen, Han Zhang, Feng Lin, Xing Zhu, and Zheyu Fang, "Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface," Photonics Research 8(6), 986-994 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF