首页 > 论文 > 激光与光电子学进展 > 57卷 > 3期(pp:30001--1)

柔性光子材料与器件的研究进展 (封面文章) (特邀综述)

Research Progress on Flexible Photonic Materials and Devices (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

柔性光子器件不受传统光电子器件刚性物理状态限制,可弯曲、可折叠、可拉伸的形式使得器件独特的光电性质得以实现和调控,极大拓展了传统光电子器件的发展模式与应用空间。结合新功能光学材料、器件集成技术以及光子器件较电子器件在物质特异性传感、信道容量和抗电磁干扰能力上的优势,柔性光子技术在多学科交叉融合领域的前沿方向,如可穿戴传感、高速光互连、光场调控、生物光遗传等展现出巨大的研究和应用价值。然而目前存在柔性集成光子器件加工制备难、机械柔韧性有限、集成化程度低等挑战。针对以上问题简要回顾了近年来研究人员在柔性光子材料与器件方面取得的研究进展并对其相关技术应用前景进行了总结和展望。

Abstract

Flexible photonic devices, which are bendable, foldable, and even stretchable, are not limited to the rigid physical state constraints of traditional optoelectronic devices and thus unique tunable optoelectronic properties could be achieved, which greatly expands the development and practical implementation of traditional optoelectronic devices. Combining with new functional optical materials, novel device integration technologies, and the advantages of photonic devices over electronic devices in material sensing specificity, channel capacity, and resistance to electromagnetic interference, flexible photonic devices show great research and application value in emerging and interdisciplinary fields such as wearable sensing, high-speed optical interconnect, light field manipulation, and optogenetic applications in biology. However, challenges including the fabrication difficulties, mechanical flexibility limitation, and the degree of integration exist in current flexible photonic technologies. This paper briefly reviews the recent progress on flexible photonic materials and devices to address those challenges. And further development and application demonstration for the flexible photonics has also been summarized and discussed.

中国激光微信矩阵
补充资料

中图分类号:O439

DOI:10.3788/LOP57.030001

所属栏目:综述

基金项目:国家重点研发计划;

收稿日期:2019-01-02

修改稿日期:2020-02-02

网络出版日期:2020-02-01

作者单位    点击查看

叶羽婷:西湖大学工学院浙江省3D微纳加工和表征研究重点实验室, 浙江 杭州 310024浙江西湖高等研究院前沿技术研究所, 浙江 杭州 310024
马辉:浙江大学信息与电子工程学院, 浙江 杭州 310027
孙春雷:西湖大学工学院浙江省3D微纳加工和表征研究重点实验室, 浙江 杭州 310024浙江西湖高等研究院前沿技术研究所, 浙江 杭州 310024
陈泽群:西湖大学工学院浙江省3D微纳加工和表征研究重点实验室, 浙江 杭州 310024浙江西湖高等研究院前沿技术研究所, 浙江 杭州 310024
吴江宏:西湖大学工学院浙江省3D微纳加工和表征研究重点实验室, 浙江 杭州 310024浙江西湖高等研究院前沿技术研究所, 浙江 杭州 310024
陈怡琦:西湖大学工学院浙江省3D微纳加工和表征研究重点实验室, 浙江 杭州 310024浙江西湖高等研究院前沿技术研究所, 浙江 杭州 310024
罗邺:西湖大学工学院浙江省3D微纳加工和表征研究重点实验室, 浙江 杭州 310024浙江西湖高等研究院前沿技术研究所, 浙江 杭州 310024
林宏焘:浙江大学信息与电子工程学院, 浙江 杭州 310027
李兰:西湖大学工学院浙江省3D微纳加工和表征研究重点实验室, 浙江 杭州 310024浙江西湖高等研究院前沿技术研究所, 浙江 杭州 310024

联系人作者:李兰(lilan@westlake.edu.cn)

备注:国家重点研发计划;

【1】Roelkens G, Abassi A, Cardile P, et al. III-V-on-silicon photonic devices for optical communication and sensing [J]. IEEE Photonics Journal. 2015, 3(3): 969-1004.

【2】Duan G H, Olivier S, Jany C, et al. Hybrid III-V silicon photonic integrated circuits for optical communication applications [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2016, 22(6): 379-389.

【3】Shih M H, Hsu K S, Lee K, et al. Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2015, 21(6): 738-742.

【4】Park D W, Schendel A A, Mikael S, et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications [J]. Nature Communications. 2014, 5: 5258.

【5】Park S, Guo Y Y, Jia X T, et al. One-step optogenetics with multifunctional flexible polymer fibers [J]. Nature Neuroscience. 2017, 20(4): 612-619.

【6】Gao L, Zhang Y H, Malyarchuk V, et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin [J]. Nature Communications. 2014, 5: 4938.

【7】Lu N S, Yang S X, Wang L. Stretchability, conformability, and low-cost manufacture of epidermal sensors[M]. ∥Rogers J A: , 2016, 31-51.

【8】Ye Y, Wong Z J, Lu X F, et al. Monolayer excitonic laser [J]. Nature Photonics. 2015, 9(11): 733-737.

【9】Harari G, Bandres M A, Lumer Y, et al. 359(6381): eaar4003 . 2018.

【10】Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator [J]. Nature. 2011, 474(7349): 64-67.

【11】Liu A S, Jones R, Liao L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor [J]. Nature. 2004, 427(6975): 615-618.

【12】Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetectorwith high responsivity and low dark current [J]. Nature Photonics. 2015, 9(4): 247-252.

【13】Du S, Lu W, Ali A, et al. A broadband fluorographene photodetector [J]. Advanced Materials. 2017, 29(22): 1700463.

【14】Parameswaran C, Gupta D. Lowcost sponge based piezocapacitive sensors using a single step leavening agent mediated autolysis process [J]. Journal of Materials Chemistry C. 2018, 6(20): 5473-5481.

【15】L?tters J C, Olthuis W, Veltink P H, et al. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications [J]. Journal of Micromechanics and Microengineering. 1997, 7(3): 145-147.

【16】Shi Z, An D C, Jiang N H, et al. Optical true-time-delay lines using polyimide-based waveguides for wideband phased-array antennas [J]. Proceedings of SPIE. 2000, 3952: 214-222.

【17】Chen L, Yang H J, Qiang Z X, et al. Direct measurement of spectrally selective absorption enhancement in Fano resonance photonic crystal cavities on plastic substrates [J]. Proceedings of SPIE. 2010, 7609: 76090E.

【18】Chortos A, Liu J, Bao Z N. Pursuing prosthetic electronic skin [J]. Nature Materials. 2016, 15(9): 937-950.

【19】Chen L Y. Tee Benjamin C K, Chortos A L, et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care [J]. Nature Communications. 2014, 5: 5028.

【20】Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics [J]. Advanced Materials. 2015, 27(15): 2433-2439.

【21】Metzger C, Fleisch E, Meyer J, et al. Flexible-foam-based capacitive sensor arrays for object detection at low cost [J]. Applied Physics Letters. 2008, 92(1): 013506.

【22】Bilenberg B, Nielsen T, Clausen B, et al. PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics [J]. Journal of Micromechanics and Microengineering. 2004, 14(6): 814-818.

【23】Shin Y S, Cho K, Lim S H, et al. PDMS-based micro PCR chip with Parylene coating [J]. Journal of Micromechanics and Microengineering. 2003, 13(5): 768-774.

【24】Wilbur J L, Jackman R J, Whitesides G M, et al. Elastomeric optics [J]. Chemistry of Materials. 1996, 8(7): 1380-1385.

【25】Choi C, Lin L, Liu Y, et al. Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects [J]. Journal of Lightwave Technology. 2004, 22(9): 2168-2176.

【26】Bosman E, van Steenberge G, Milenkov I, et al. Fully flexible optoelectronic foil [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2010, 16(5): 1355-1362.

【27】Huang Y Y, Paloczi G T, Yariv A, et al. Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography [J]. The Journal of Physical Chemistry B. 2004, 108(25): 8606-8613.

【28】Paloczi G T, Huang Y Y, Yariv A. Free-standing all-polymer microring resonator optical filter [J]. Electronics Letters. 2003, 39(23): 1650-1651.

【29】Kim K J, Seo J K, Oh M C. Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector [J]. Optics Express. 2008, 16(3): 1423-1430.

【30】Clark J, Lanzani G. Organic photonics for communications [J]. Nature Photonics. 2010, 4(7): 438-446.

【31】Furumi S, Fudouzi H, Miyazaki H, et al. Flexible polymer colloidal-crystal lasers with a light-emitting planar defect [J]. Advanced Materials. 2007, 19(16): 2067-2072.

【32】Song H C, Oh M C, Ahn S W, et al. Flexible low-voltage electro-optic polymer modulators [J]. Applied Physics Letters. 2003, 82(25): 4432-4434.

【33】Ma H. JenAK Y, Dalton L R. Polymer-based optical waveguides: materials, processing, and devices [J]. Advanced Materials. 2002, 14(19): 1339-1365.

【34】Seo J H, Zhang K, Kim M, et al. Phototransistors: flexible phototransistors based on single-crystalline silicon nanomembranes [J]. Advanced Optical Materials. 2016, 4(1): 120-125.

【35】Seo J H, Oh T Y, Park J, et al. A multifunction heterojunction formed between pentacene and a single-crystal silicon nanomembrane [J]. Advanced Functional Materials. 2013, 23(27): 3398-3403.

【36】Cho M, Seo J H, Zhao D Y, et al. Amorphous Si/SiO2 distributed Bragg reflectors with transfer printed single-crystalline Si nanomembranes [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2016, 34(4): 040601.

【37】Yoon J, Baca A J, Park S I, et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs [J]. Nature Materials. 2008, 7: 907-915.

【38】Kim M, Seo J H, Yu Z F, et al. Flexible germanium nanomembrane metal-semiconductor-metal photodiodes [J]. Applied Physics Letters. 2016, 109(5): 051105.

【39】Qin G X, Cai T H, Yuan H, et al. Flexible radio-frequency single-crystal germanium switch on plastic substrates [J]. Applied Physics Letters. 2014, 104(16): 163501.

【40】Qin G X, Yuan H C, Qin Y C, et al. Fabrication and characterization of flexible microwave single-crystal germanium nanomembrane diodes on a plastic substrate [J]. IEEE Electron Device Letters. 2013, 34(2): 160-162.

【41】Yin J, Cui X R, Wang X W, et al. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission [J]. Applied Physics Letters. 2016, 108(24): 241107.

【42】Yang W Q, Yang H J, Qin G X, et al. Large-area InP-based crystalline nanomembrane flexible photodetectors [J]. Applied Physics Letters. 2010, 96(12): 121107.

【43】Fan D J, Lee K, Forrest S R. Flexible thin-film InGaAs photodiode focal plane array [J]. ACS Photonics. 2016, 3(4): 670-676.

【44】Zheng Z Q, Zhang T M, Yao J, et al. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices [J]. Nanotechnology. 2016, 27(22): 225501.

【45】Velusamy D B, Haque M A, Parida M R, et al. Hybrid materials: 2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors [J]. Advanced Functional Materials. 2017, 27(15): 1605554.

【46】Velusamy D B, Kim R H, Cha S, et al. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection [J]. Nature Communications. 2015, 6: 8063.

【47】Zhao S, Liu X, Woo S Y, et al. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band [J]. Applied Physics Letters. 2015, 107(4): 043101.

【48】Sarwar A G, Carnevale S D, Yang F, et al. Semiconductor nanowirelight-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices [J]. Small. 2015, 11(40): 5402-5408.

【49】Kumaresan V, Largeau L, Madouri A, et al. Epitaxy of GaN nanowires on graphene [J]. Nano Letters. 2016, 16(8): 4895-4902.

【50】Dai X, Messanvi A, Zhang H Z, et al. Flexible light-emitting diodes based on vertical nitride nanowires [J]. Nano Letters. 2015, 15(10): 6958-6964.

【51】Chen G, Liang B, Liu Z, et al. High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays [J]. Journal of Materials Chemistry C. 2014, 2(7): 1270-1277.

【52】Claudon J, Bleuse J, Malik N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire [J]. Nature Photonics. 2010, 4(3): 174-177.

【53】Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors [J]. Nature. 2006, 442(7099): 180-183.

【54】Sukhovatkin V, Hinds S, Brzozowski L, et al. Colloidal quantum-dot photodetectors exploiting multiexciton generation [J]. Science. 2009, 324(5934): 1542-1544.

【55】McDonald S A, Konstantatos G, Zhang S G, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J]. Nature Materials. 2005, 4(2): 138-142.

【56】Polman A, Zijlstra T, et al. Amorphous silicon waveguides for microphotonics [J]. Journal of Applied Physics. 2002, 92(2): 649-653.

【57】Harke A, Krause M, Mueller J. Low-loss singlemode amorphous silicon waveguides [J]. Electronics Letters. 2005, 41(25): 1377-1379.

【58】Kuyken B, Ji H, Clemmen S, et al. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides [J]. Optics Express. 2011, 19(26): B146-B153.

【59】Kamei T, Paegel B M, Scherer J R, et al. Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices [J]. Analytical Chemistry. 2003, 75(20): 5300-5305.

【60】Roeloffzen C G H, Hoekman M, Klein E J, et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2018, 24(4): 1-21.

【61】Sanne A, Ghosh R, Rai A, et al. Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates [J]. Applied Physics Letters. 2015, 106(6): 062101.

【62】Furuhashi M, Fujiwara M, Ohshiro T, et al. Development of microfabricated TiO2 channel waveguides [J]. AIP Advances. 2011, 1(3): 032102.

【63】Liu J N, Huang Q L, Liu K K, et al. Nanoantenna-microcavity hybrids with highly cooperative plasmonic-photonic coupling [J]. Nano Letters. 2017, 17(12): 7569-7577.

【64】Park J, Ozdemir S K, Monifi F, et al. Titanium dioxide whispering gallery microcavities [J]. Advanced Optical Materials. 2015, 2(8): 711-717.

【65】Atkins R M. -07-27 [P]. Espindola R P. Method for producing photo induced grating devices by UV irradiation of heat-activated hydrogenated glass: US5930420 A. 1999.

【66】Glebov L B, Smirnov V I. -07-01[2019-12-25] . http: ∥www. google. co. in/patents/US7394842B2. 2008.

【67】Glebov L B, Flecher E, Smirnov V I, et al. -09-09[2019-12- 25] . http: ∥www. google. co. in/patents/ US7424185B2. 2008.

【68】Flemming J H. -06-13[2019-12-25] . http: ∥www. google. co. in/patents/US16/072828. 2019.

【69】Di X X, Hu Z M, Jiang J T, et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs [J]. Chemical Communications. 2017, 53(80): 11068-11071.

【70】Sandland J G. Sputtered silicon oxynitride for microphotonics: a materials study [D]. Boston: Massachusetts Institute of Technology. 2004.

【71】Kim J, Winick K A, Florea C, et al. Design and fabrication of low-loss hydrogenated amorphous silicon overlay DBR for glass waveguide devices [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2002, 8(6): 1307-1315.

【72】Fan L, Varghese L T, Xuan Y, et al. Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing [J]. Optics Express. 2012, 20(18): 20564-20575.

【73】Rangarajan B, Kovalgin A Y, W?rhoff K, et al. Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics [J]. Optics Letters. 2013, 38(6): 941-943.

【74】Li L, Lin H T, Qiao S T, et al. Monolithically integrated stretchable photonics [J]. Light: Science & Applications. 2018, 7(2): 17138.

【75】Kim M, Seo J H, Yu Z F, et al. Flexible germanium nanomembrane metal-semiconductor-metal photodiodes [J]. Applied Physics Letters. 2016, 109(5): 051105.

【76】Hsueh C H. Modeling of elastic deformation of multilayers due to residual stresses and external bending [J]. Journal of Applied Physics. 2002, 91(12): 9652-9656.

【77】Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics [J]. Nature. 2013, 499(7459): 458-463.

【78】Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits [J]. Science. 2008, 320(5875): 507-511.

【79】Sekitani T, Zschieschang U, Klauk H, et al. Flexible organic transistors and circuits with extreme bending stability [J]. Nature Materials. 2010, 9(12): 1015-1022.

【80】Yuan H C, Ma Z Q, Roberts M M, et al. High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers [J]. Journal of Applied Physics. 2006, 100(1): 013708.

【81】Seo J H, Chang T H, Lee J, et al. Microwave flexible transistors on cellulose nanofibrillated fiber substrates [J]. Applied Physics Letters. 2015, 106(26): 262101.

【82】Yang W Q, Yang H J, Qin G X, et al. Large-area InP-based crystalline nanomembrane flexible photodetectors [J]. Applied Physics Letters. 2010, 96(12): 121107.

【83】Chen Y, Li H, Li M. Flexible and tunable silicon photonic circuits on plastic substrates [J]. Scientific Reports. 2012, 2: 622.

【84】Li L, Lin H T, Qiao S T, et al. Integrated flexible chalcogenide glass photonic devices [J]. Nature Photonics. 2014, 8(8): 643-649.

【85】Hu J J, Li L, Lin H T, et al. Flexible integrated photonics: where materials, mechanics and optics meet [Invited] [J]. Optical Materials Express. 2013, 3(9): 1313-1331.

【86】Sun J Y, Lu N S, Yoon J, et al. Inorganic islands on a highly stretchable polyimide substrate [J]. Journal of Materials Research. 2009, 24(11): 3338-3342.

【87】Li L, Zhang P, Wang W M, et al. Foldable and cytocompatible Sol-gel TiO2 photonics [J]. Scientific Reports. 2015, 5: 13832.

【88】Li L, Lin H T, Huang Y Z, et al. High-performance flexible waveguide-integrated photodetectors [J]. Optica. 2018, 5(1): 44-51.

【89】Harrison C, Stafford C M, Zhang W, et al. Sinusoidal phase grating created by a tunably buckled surface [J]. Applied Physics Letters. 2004, 85(18): 4016-4018.

【90】Yu C J. O''''Brien K, Zhang Y H, et al. Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates [J]. Applied Physics Letters. 2010, 96(4): 041111.

【91】Lee S, Kim S, Kim T T, et al. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts [J]. Advanced Materials. 2012, 24(26): 3491-3497.

【92】Amjadi M, Pichitpajongkit A, Lee S, et al. Highly stretchable and sensitive strain sensor based onsilver nanowire-elastomer nanocomposite [J]. ACS Nano. 2014, 8(5): 5154-5163.

【93】Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection [J]. Nature Nanotechnology. 2011, 6(5): 296-301.

【94】Kim D H, Lu N S, Ghaffari R, et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy [J]. Nature Materials. 2011, 10(4): 316-323.

【95】Verplancke R, Bossuyt F, Cuypers D, et al. Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance [J]. Journal of Micromechanics and Microengineering. 2012, 22(1): 015002.

【96】Li L, Lin H T, Michon J, et al. A new twist on glass: a brittle material enabling flexible integrated photonics [J]. International Journal of Applied Glass Science. 2017, 8(1): 61-68.

【97】Aksu S, Huang M, Artar A, et al. Flexible plasmonics on unconventional and nonplanar substrates [J]. Advanced Materials. 2011, 23(38): 4422-4430.

【98】Ryabchun A, Wegener M, Gritsai Y, et al. Novel effective approach for the fabrication of PDMS-based elastic volume gratings [J]. Advanced Optical Materials. 2016, 4(1): 169-176.

【99】Ghisleri C. Potenza M A C, Ravagnan L, et al. A simple scanning spectrometer based on a stretchable elastomeric reflective grating [J]. Applied Physics Letters. 2014, 104(6): 061910.

【100】Yin K, Lee Y H, He Z Q, et al. Stretchable, flexible, rollable, and adherable polarization volume grating film [J]. Optics Express. 2019, 27(4): 5814-5823.

【101】Khodasevych I E, Shah C M, Sriram S, et al. Elastomeric silicone substrates for terahertz fishnet metamaterials [J]. Applied Physics Letters. 2012, 100(6): 061101.

【102】Shalaev V M, Cai W S, Chettiar U K, et al. Negative index of refraction in optical metamaterials [J]. Optics Letters. 2005, 30(24): 3356-3358.

【103】Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials [J]. Nature Photonics. 2011, 5(9): 523-530.

【104】Walia S, Shah C M, Gutruf P, et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales [J]. Applied Physics Reviews. 2015, 2(1): 011303.

【105】Xu X C, Subbaraman H, Hosseini A, et al. Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration [J]. Optics Letters. 2012, 37(6): 1020-1022.

【106】Meitl M A, Zhu Z T, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp [J]. Nature Materials. 2006, 5(1): 33-38.

【107】Zablocki M J, Sharkawy A, Ebil O, et al. Nanomembrane transfer process for intricate photonic device applications [J]. Optics Letters. 2011, 36(1): 58-60.

【108】Zhou W D, Ma Z Q, Chuwongin S, et al. Semiconductor nanomembranes for integrated silicon photonics and flexible Photonics [J]. Optical and Quantum Electronics. 2012, 44(12/13): 605-611.

【109】Chanda D, Shigeta K, Gupta S, et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing [J]. Nature Nanotechnology. 2011, 6(7): 402-407.

【110】Hines D R, Ballarotto V W, Williams E D, et al. Transfer printing methods for the fabrication of flexible organic electronics [J]. Journal of Applied Physics. 2007, 101(2): 024503.

【111】Lin H T, Li L, Zou Y, et al. Chalcogenide glass planar photonics: from mid-IR sensing to 3-D flexible substrate integration [J]. Proceedings of SPIE. 2013, 8600: 86000K.

【112】Zou Y, Zhang D N, Lin H T, et al. High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates [J]. Advanced Optical Materials. 2014, 2(5): 478-486.

【113】Koyama F, Liou K Y, Dentai A G, et al. Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications [J]. IEEE Photonics Technology Letters. 1993, 5(8): 916-919.

【114】Ahn D, Hong C Y, Liu J F, et al. High performance, waveguide integrated Ge photodetectors [J]. Optics Express. 2007, 15(7): 3916-3921.

【115】Suzuki K, Takiguchi K, Hotate K. Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit [J]. Journal of Lightwave Technology. 2000, 18(1): 66-72.

【116】Mahameed R, Sinha N, Pisani M B, et al. Dual-beam actuation of piezoelectric AlN RF MEMS switches monolithically integrated with AlN contour-mode resonators [J]. Journal of Micromechanics and Microengineering. 2008, 18(10): 105011.

【117】Karagodsky V, Pesala B, Chase C, et al. Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings [J]. Optics Express. 2010, 18(2): 694-699.

【118】Lee S J, Ku Z, Barve A, et al. A monolithically integrated plasmonic infrared quantum dot camera [J]. Nature Communications. 2011, 2: 286.

【119】Samusjew A, Kratzer M, Moser A, et al. Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns [J]. ACS Applied Materials & Interfaces. 2017, 9(5): 4941-4947.

【120】Heck M J R, Bauters J F, Davenport M L, et al. Hybrid silicon photonic integrated circuit technology [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2013, 19(4): 6100117.

【121】Roelkens G. Brouckaert J, van Thourhout D, et al. Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene [J]. Journal of the Electrochemical Society. 2006, 153(12): G1015-G1019.

【122】Yun S, Park S, Park B, et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response [J]. Advanced Materials. 2014, 26(26): 4474-4480.

【123】Zhao H C, O''''Brien K, Li S, et al. 1(1): eaai7529 . 2016.

【124】Ramuz M, Tee B C, Tok J B, et al. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics [J]. Advanced Materials. 2012, 24(24): 3223-3227.

【125】Missinne J, Benéitez N T, Chiesura G, et al. Flexible thin polymer waveguide Bragg grating sensor foils for strain sensing [J]. Proceedings of SPIE. 2017, 10101: 101010X.

【126】Karrock T, Gerken M. Pressure sensor based on flexible photonic crystal membrane [J]. Biomedical Optics Express. 2015, 6(12): 4901-4911.

【127】Harnett C K, Zhao H C, Shepherd R F. Stretchable optical fibers: threads for strain-sensitive textiles [J]. Advanced Materials Technologies. 2017, 2(9): 1700087.

【128】To C, Hellebrekers T L, Park Y L. Highly stretchable optical sensors for pressure, strain, and curvature measurement . [C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 28-October 2, 2015. Hamburg, Germany. IEEE. 2015, 5898-5903.

【129】Guerrero R A, Barretto J T. Uy J L V, et al. Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating [J]. Optics Communications. 2007, 270(1): 1-7.

【130】Zhang L, Pan J, Zhang Z, et al. Ultrasensitive hybrid optical skin [2020-01-25].https: ∥arxiv. org/ftp/arxiv/papers/1812/1812. 03808. pdf.[2020-01-25]. 0.

【131】Xu L Z, Gutbrod S R, Bonifas A P, et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium [J]. Nature Communications. 2014, 5: 3329.

【132】Kalathimekkad S, Missinne J, Schaubroeck D, et al. Alcohol vapor sensor based on fluorescent dye-doped optical waveguides [J]. IEEE Sensors Journal. 2015, 15(1): 76-81.

【133】Applegate M B, Perotto G, Kaplan D L, et al. Biocompatible silk step-index optical waveguides [J]. Biomedical Optics Express. 2015, 6(11): 4221-4227.

【134】Kujala S, Mannila A, Karvonen L, et al. Natural silk as a photonics component: a study on its light guiding and nonlinear optical properties [J]. Scientific Reports. 2016, 6: 22358.

【135】Bai W B, Yang H J, Ma Y J, et al. Optical waveguides: flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon [J]. Advanced Materials. 2018, 30(32): 1870239.

【136】Liu X J, Wang J J, Tang L H, et al. Flexible plasmonic metasurfaces with user-designed patterns for molecular sensing and cryptography [J]. Advanced Functional Materials. 2016, 26(30): 5515-5523.

【137】Chen Y, Lin H T, Hu J J, et al. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing [J]. ACS Nano. 2014, 8(7): 6955-6961.

【138】Jin T N. Lin H Y G, Tiwald T, et al. Flexible mid-infrared photonic circuits for real-time and label-free hydroxyl compound detection [J]. Scientific Reports. 2019, 9: 4153.

【139】Li M J, Hoover B, Nazarov V N, et al. Multicore fiber for optical interconnect applications . [C]∥2012 17th Opto-Electronics and Communications Conference, July 2-6, 2012. Busan, Korea (South). IEEE. 2012, 564-565.

【140】van Steenberge G, Geerinck P, van Put S, et al. MT-compatible laser-ablated interconnections for optical printed circuit boards [J]. Journal of Lightwave Technology. 2004, 22(9): 2083-2090.

【141】Bona G L, Offrein B J, Bapst U, et al. Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board [J]. Proceedings of SPIE. 2004, 5453: 134-141.

【142】Krishnamoorthy A V, Ho R, Zheng X Z, et al. Computer systems based on silicon photonic interconnects [J]. Proceedings of the IEEE. 2009, 97(7): 1337-1361.

【143】Batten C, Joshi A, Orcutt J, et al. Building manycore processor-to-DRAM networks with monolithic CMOS silicon photonics [J]. IEEE Micro. 2009, 29(4): 8-21.

【144】Chen R T, Lin L, Choi C, et al. Fully embedded board-level guided-wave optoelectronic interconnects [J]. Proceedings of the IEEE. 2000, 88(6): 780-793.

【145】Gu T, Nair R, Haney M W. Prismatic coupling structure for intrachip global communication [J]. IEEE Journal of Quantum Electronics. 2009, 45(4): 388-395.

【146】Missinne J. Kalathimekkad S, van Hoe B, et al. Stretchable optical waveguides [J]. Optics Express. 2014, 22(4): 4168-4179.

【147】Doany F E, Schow C L, Kash J A, et al. Waveguide-coupled parallel optical transceiver technology for Tb/s-class chip-to-chip data transmission [J]. Proceedings of SPIE. 2008, 6899: 68990V.

【148】Kromer C, Sialm G, Berger C, et al. A 100-mW 4/spl times/10 Gb/s transceiver in 80-nm CMOS for high-density optical interconnects [J]. IEEE Journal of Solid-State Circuits. 2005, 40(12): 2667-2679.

【149】Li L, Zou Y, Lin H T, et al. A fully-integrated flexible photonic platform for chip-to-chip optical interconnects [J]. Journal of Lightwave Technology. 2013, 31(24): 4080-4086.

【150】de Wilde M. Chip-to-chip parallel optical interconnects over optical backpanels based on arrays of multimode waveguides . [C]∥Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter. 2004, 61-64.

【151】Bosman E, van Steenberge G, van Hoe B, et al. Highly reliable flexible active optical links [J]. IEEE Photonics Technology Letters. 2010, 22(5): 287-289.

【152】Hsu K S, Chiu T T, Lee P T, et al. Wavelength tuning by bending a flexible photonic crystal laser [J]. Journal of Lightwave Technology. 2013, 31(12): 1960-1964.

【153】Yu C L. Kim H, de Leon N, et al. Stretchable photonic crystal cavity with wide frequency tunability [J]. Nano Letters. 2013, 13(1): 248-252.

【154】Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate [J]. Nano Letters. 2016, 16(4): 2818-2823.

【155】Kamali S M, Arbabi E, Arbabi A, et al. Highly tunable elastic dielectric metasurface lenses [J]. Laser & Photonics Reviews. 2016, 10(6): 1002-1008.

【156】Malek S C, Ee H S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate [J]. Nano Letters. 2017, 17(6): 3641-3645.

【157】Yin K, Lee Y H, He Z Q, et al. Stretchable, flexible, and adherable polarization volume grating film for waveguide-based augmented reality displays [J]. Journal of the Society for Information Display. 2019, 27(4): 232-237.

【158】Schauer S, Liu X, Worgull M, et al. Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers [J]. Optical Materials Express. 2015, 5(3): 576-584.

【159】Jiang Z H, Kang L, Werner D H. Conformal metasurface-coated dielectric waveguides for highly confined broadband optical activity with simultaneous low-visibility and reduced crosstalk [J]. Nature Communications. 2017, 8(1): 356.

【160】Kamali S M, Arbabi A, Arbabi E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces [J]. Nature Communications. 2016, 7: 11618.

【161】Ni X, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light [J]. Science. 2015, 349(6254): 1310-1314.

【162】Cheng J R, Jafar-Zanjani S, Mosallaei H. All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength [J]. Scientific Reports. 2016, 6: 38440.

【163】Yamagiwa S, Ishida M, Kawano T. Flexible parylene-film optical waveguide arrays [J]. Applied Physics Letters. 2015, 107(8): 083502.

【164】Deisseroth K. Optogenetics [J]. Nature Methods. 2011, 8(1): 26-29.

【165】Park S, Loke G, Fink Y, et al. Flexible fiber-based optoelectronics for neural interfaces [J]. Chemical Society Reviews. 2019, 48(6): 1826-1852.

【166】Lu C, Park S, Richner T J, et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits [J]. Science Advances. 2017, 3(3): e1600955.

引用该论文

Ye Yuting,Ma Hui,Sun Chunlei,Chen Zequn,Wu Jianghong,Chen Yiqi,Luo Ye,Lin Hongtao,Li Lan. Research Progress on Flexible Photonic Materials and Devices[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030001

叶羽婷,马辉,孙春雷,陈泽群,吴江宏,陈怡琦,罗邺,林宏焘,李兰. 柔性光子材料与器件的研究进展[J]. 激光与光电子学进展, 2020, 57(3): 030001

被引情况

【1】进晓荣,吴强,黄松,贾子熙,宋冠廷,周旭,姚江宏,许京军. 飞秒激光过饱和掺杂硅基光电探测器研究进展. 激光与光电子学进展, 2020, 57(11): 111430--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF