首页 > 论文 > 中国激光 > 46卷 > 8期(pp:801007--1)

纳秒/皮秒双束激光联合驱动双层靶的γ辐射特性

Gamma Radiation Characteristics of Double-Layer Targets Driven by Nanosecond/Picosecond Two-Beam Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于神光Ⅱ升级装置,研究了纳秒/皮秒双束激光联合驱动双层靶的伽马(γ)辐射特征。利用ns束激光与CH薄膜靶相互作用,产生大尺度近临界密度等离子体,然后将ps束激光作用在该等离子体上,产生高能电子,高能电子穿过2 mm厚的Au靶,通过轫致辐射产生γ射线。对不同方向的γ辐射能谱和靶室外的γ辐射剂量分布进行实验测量,发现γ辐射集中在激光前冲方向,具有较小的发散角,而且在该方向上高能段的γ辐射较强。这说明双层靶的设计可以提高ps束激光与等离子体的能量耦合效率,提高高能电子温度,增加高能电子数目,有利于高能段γ辐射在ps束激光的前冲方向集中。另外,在靶室外距离靶点1.25 m处测到的50 keV以上γ辐射的单发次最大剂量为277 μGy。本研究结果对γ辐射的防护和应用具有参考价值。

Abstract

We explore the gamma radiation characteristics of double-layer targets driven by nanosecond/picosecond two-beam lasers based on the Shenguang II upgrade laser facility. A nanosecond laser is used to interact with a thin film target to generate a large-scale near-critical density plasma. Further, a picosecond laser interacts with the plasma to generate high-energy electrons. The high-energy electrons pass through a 2 mm thick Au target to generate gamma rays via bremsstrahlung. Subsequently, the experiments measure the gamma energy spectra in different directions and gamma doses outside the target chamber. It is found that the gamma radiation is concentrated in the picosecond laser propagating direction with a small divergence angle, and the high-energy parts of the gamma rays are enhanced in this direction as well. The design of the double-layer target can improve the energy coupling efficiency of the picosecond beam and plasma, increase the temperature and number of high-energy electrons, and facilitate the concentration of high-energy gamma radiation in the propagating direction of the picosecond laser beam. Furthermore, the single-shot maximum dose of gamma radiation, which has energy higher than 50 keV and is measured at 1.25 m from the target outside the target chamber, is 277 μGy. Results of the present study could be considered as references for the shielding and application of gamma radiation.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0801007

所属栏目:激光器件与激光物理

收稿日期:2019-03-20

修改稿日期:2019-04-17

网络出版日期:2019-08-01

作者单位    点击查看

刘钊:中国工程物理研究院上海激光等离子体研究所, 上海 201800
熊俊:中国工程物理研究院上海激光等离子体研究所, 上海 201800
安红海:中国工程物理研究院上海激光等离子体研究所, 上海 201800
谢志勇:中国工程物理研究院上海激光等离子体研究所, 上海 201800
方智恒:中国工程物理研究院上海激光等离子体研究所, 上海 201800
王伟:中国工程物理研究院上海激光等离子体研究所, 上海 201800
王琛:中国工程物理研究院上海激光等离子体研究所, 上海 201800
王瑞荣:中国工程物理研究院上海激光等离子体研究所, 上海 201800
雷安乐:中国工程物理研究院上海激光等离子体研究所, 上海 201800
黄秀光:中国工程物理研究院上海激光等离子体研究所, 上海 201800
裴文兵:中国工程物理研究院上海激光等离子体研究所, 上海 201800
傅思祖:中国工程物理研究院上海激光等离子体研究所, 上海 201800

联系人作者:刘钊, 王伟(389366839@qq.com, 389366839@qq.com)

【1】Gales S, Tanaka A, Balabanski L et al. The extreme light infrastructure: nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Reports on Progress in Physics. 81(9), (2018).

【2】Leng Y X. Shanghai superintense ultrafast laser facility. Chinese Journal of Lasers. 46(1), (2019).
冷雨欣. 上海超强超短激光实验装置. 中国激光. 46(1), (2019).

【3】Zhu J Q, Chen S H, Zheng Y X et al. Review on development of Shenguang-Ⅱ laser facility. Chinese Journal of Lasers. 46(1), (2019).
朱健强, 陈绍和, 郑玉霞 等. 神光Ⅱ激光装置研制. 中国激光. 46(1), (2019).

【4】Gibbon P and F?rster E. Short-pulse laser-plasma interactions. Plasma Physics and Controlled Fusion. 38(6), 769-793(1996).

【5】Ledingham K W D, Spencer I, McCanny T et al. . Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Physical Review Letters. 84(5), 899-902(2000).

【6】Li S, Shen B F, Xu J C et al. Ultrafast multi-MeV gamma-ray beam produced by laser-accelerated electrons. Physics of Plasmas. 24(9), (2017).

【7】Huo L, Liu J L and Ma Y H. Radiation dose and protection. 59-79(2015).
霍雷, 刘剑利, 马永和. 辐射剂量与防护. 59-79(2015).

【8】Zheng J H, Yan J, Su M et al. Numerical study on characteristics of neutron and gamma radiations from implosions on Shenguang Ⅲ laser facility. High Power Laser and Particle Beams. 27(11), (2015).
郑建华, 晏骥, 苏明 等. 神光Ⅲ主机装置内爆中子和伽马辐射特性的数值模拟. 强激光与粒子束. 27(11), (2015).

【9】Ledingham K M D and Galster W. Laser-driven particle and photon beams and some applications. New Journal of Physics. 12(4), (2010).

【10】Borne F, Delacroix D, Gelé J M et al. Radiation protection for an ultra-high intensity laser. Radiation Protection Dosimetry. 102(1), 61-70(2002).

【11】Clarke R J, Neely D, Edwards R D et al. Radiological characterisation of photon radiation from ultra-high-intensity laser-plasma and nuclear interactions. Journal of Radiological Protection. 26(3), 277-286(2006).

【12】Yang B, Qiu R, Yu M H et al. Measurements of X-ray doses and spectra produced by picosecond laser-irradiated solid targets. Applied Radiation and Isotopes. 123, 41-48(2017).

【13】Yang B, Qiu R, Li J L et al. Photon dose estimation from ultraintense laser-solid interactions and shielding calculation with Monte Carlo simulation. Radiation Physics and Chemistry. 131, 13-21(2017).

【14】Wang W T, Liu J S, Cai Y et al. Angular and energy distribution of fast electrons emitted from a solid surface irradiated by femtosecond laser pulses in various conditions. Physics of Plasmas. 17(2), (2010).

【15】Reginatto M. Overview of spectral unfolding techniques and uncertainty estimation. Radiation Measurements. 45(10), 1323-1329(2010).

【16】Chen C D, King J A, Key M H et al. 79(10): 10E305. differential filters with image plate dosimeters. Review of Scientific Instruments. (2008).

【17】Kruer W L and Estabrook K. J×B heating by very intense laser light. Physics of Fluids. 28(1), 430-432(1985).

【18】Norreys P A, Santala M, Clark E et al. Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids. Physics of Plasmas. 6(5), 2150-2156(1999).

引用该论文

Zhao Liu, Jun Xiong, Honghai An, Zhiyong Xie, Zhiheng Fang, Wei Wang, Chen Wang, Ruirong Wang, Anle Lei, Xiuguang Huang, Wenbing Pei, Sizu Fu. Gamma Radiation Characteristics of Double-Layer Targets Driven by Nanosecond/Picosecond Two-Beam Lasers[J]. Chinese Journal of Lasers, 2019, 46(8): 0801007

刘钊, 熊俊, 安红海, 谢志勇, 方智恒, 王伟, 王琛, 王瑞荣, 雷安乐, 黄秀光, 裴文兵, 傅思祖. 纳秒/皮秒双束激光联合驱动双层靶的γ辐射特性[J]. 中国激光, 2019, 46(8): 0801007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF