Photonics Research, 2019, 7 (8): 08000A40, Published Online: Jul. 25, 2019   

Transmission of photonic polarization states through 55-m water: towards air-to-sea quantum communication Download: 802次

Author Affiliations
1 School of Physics and Astronomy, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract
Quantum communication has been rapidly developed due to its unconditional security and successfully implemented through optical fibers and free-space air in experiments. To build a complete quantum communication network involving satellites in space and submersibles in ocean, the underwater quantum channel has been investigated in both theory and experiment. However, the question of whether the polarization encoded qubit can survive through a long-distance and high-loss underwater channel, which is considered as the restricted area for satellite-borne radio waves, still remains. Here, we experimentally demonstrate the transmission of blue-green photonic polarization states through 55-m-long water. We prepare six universal quantum states at the single photon level and observe their faithful transmission in a large marine test platform. We obtain complete information of the channel by quantum process tomography. The distance demonstrated in this work reaches a region allowing potential real applications, representing a step further towards air-to-sea quantum communication.

Cheng-Qiu Hu, Zeng-Quan Yan, Jun Gao, Zhi-Qiang Jiao, Zhan-Ming Li, Wei-Guan Shen, Yuan Chen, Ruo-Jing Ren, Lu-Feng Qiao, Ai-Lin Yang, Hao Tang, Xian-Min Jin. Transmission of photonic polarization states through 55-m water: towards air-to-sea quantum communication[J]. Photonics Research, 2019, 7(8): 08000A40.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!