首页 > 论文 > 中国激光 > 46卷 > 7期(pp:704003--1)

基于相移与调制度比的结构光三维面形垂直测量方法

Vertical Measurement Method for Structured Light Three-Dimensional Profilometry Based on Phase-Shifting and Modulation Ratio

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了兼顾调制度测量轮廓术的测量速度与测量精度,提出了一种新的基于相移与调制度比的调制度测量轮廓术方法。使用一个由柱面镜和普通投影镜头组成的特殊投影系统,将竖直与水平两组相移正弦光栅依次投射在测量区域,柱面镜使两种光栅条纹的“像面”分离,两“像面”之间构成测量区域。利用相移算法得到两组正弦条纹在测量区域的调制度分布,并建立两种条纹的调制度比与实际物理位置的映射关系。测量时,将待测物体放置于测量区域,并根据物体表面两种条纹的调制度比与物理位置的映射关系,即可重建物体的三维面形。通过对实物的测量实验验证了所提方法的可行性。

Abstract

In this paper, a new modulation measuring profilometry method based on phase-shifting and modulation ratio is proposed in order to balance the measurement speed and accuracy of the traditional methods. In the proposed method, a special projection system comprising a common projection lens and a cylindrical lens is used. Two groups of vertical and horizontal phase shifting sinusoidal grating fringes are projected onto the measurement area. The “image planes” of the two types of fringes are separated by the cylindrical lens, and the measurement area is between the two “image planes.” The modulation distributions of the two types of sinusoidal grating fringes are obtained using a phase shifting algorithm, and the mapping relationship between the modulation ratio of the fringes and the actual position is established. The three-dimensional shape of the object can be reconstructed according to the mapping relationship between modulation ratio of the fringes and the actual position. In addition, the experiments are conducted to evaluate the feasibility of the proposed method.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0704003

所属栏目:测量与计量

基金项目:国家自然科学基金、国家重大科学仪器开发专项;

收稿日期:2019-01-24

修改稿日期:2019-03-11

网络出版日期:2019-07-01

作者单位    点击查看

卢明腾:西南技术物理研究所, 四川 成都 610041
苏显渝:四川大学电子信息学院, 四川 成都 610065

联系人作者:苏显渝(xysu@scu.edu.cn)

备注:国家自然科学基金、国家重大科学仪器开发专项;

【1】Geng J. Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics. 3(2), 128-160(2011).

【2】Su X Y, Zhang Q C and Chen W J. Three-dimensional imaging based on structured illumination. Chinese Journal of Lasers. 41(2), (2014).
苏显渝, 张启灿, 陈文静. 结构光三维成像技术. 中国激光. 41(2), (2014).

【3】Chen F, Brown G M and Song M M. Overview of three-dimensional shape measurement using optical methods. Optical Engineering. 39(1), 10-22(2000).

【4】Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Optics and Lasers in Engineering. 48(2), 149-158(2010).

【5】Srinivasan V, Liu H C and Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects. Applied Optics. 23(18), 3105-3108(1984).

【6】Liu Y K, Evelyn O, Yang Z et al. A one-dimensional phase-shift technique based on dual-frequency crossed fringe for phase measuring deflectometry. Chinese Journal of Lasers. 42(3), (2015).
刘元坤, Evelyn Olesch. 杨征, 等. 基于双频正交光栅一维相移的相位测量偏折术研究. 中国激光. 42(3), (2015).

【7】Liu C, Gai S Y and Da F P. Sub-regional phase error compensation for structural light measurement. Chinese Journal of Lasers. 45(6), (2018).
刘超, 盖绍彦, 达飞鹏. 结构光测量中分区域相位误差补偿方法研究. 中国激光. 45(6), (2018).

【8】Su X Y, von Bally G and Vukicevic D. Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation. Optics Communications. 98(1/2/3), 141-150(1993).

【9】Takeda M and Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics. 22(24), 3977-3982(1983).

【10】Su X Y and Chen W J. Fourier transform profilometry: a review. Optics and Lasers in Engineering. 35(5), 263-284(2001).

【11】Stockwell R G, Mansinha L and Lowe R P. Localization of the complex spectrum: the S transform. IEEE Transactions on Signal Processing. 44(4), 998-1001(1996).

【12】?zder S, Kocahan ?, Co?kun E et al. Optical phase distribution evaluation by using an S-transform. Optics Letters. 32(6), 591-593(2007).

【13】Bai J X, Qu X H, Feng W et al. Separation method of overlapping phase-shift gratings in three-dimensional measurement of double projection structured light. Acta Optica Sinica. 38(11), (2018).
白景湘, 曲兴华, 冯维 等. 双投影结构光三维测量中重叠相移光栅的分离方法. 光学学报. 38(11), (2018).

【14】Yoshizawa T, Shinoda T and Otani Y. Uniaxis rangefinder using contrast detection of a projected pattern. Proceedings of SPIE. 4190, 115-122(2001).

【15】Takeda M, Aoki T, Miyamoto Y et al. Absolute three-dimensional shape measurements using coaxial and coimage plane optical systems and Fourier fringe analysis for focus detection. Optical Engineering. 39(1), 61-68(2000).

【16】Dou Y F, Su X Y, Chen Y F et al. A flexible fast 3D profilometry based on modulation measurement. Optics and Lasers in Engineering. 49(3), 376-383(2011).

【17】Shao S Y and Xu N. Optical three-dimensional profilometry based on modulation ratio. Chinese Journal of Lasers. 36(2), 435-438(2009).
邵双运, 徐楠. 基于调制度比的光学三维测量轮廓术. 中国激光. 36(2), 435-438(2009).

【18】Dou Y F, Su X Y, Chen Y F et al. A fast modulation measurement profilometry. Acta Optica Sinica. 29(7), 1858-1862(2009).
窦蕴甫, 苏显渝, 陈延非 等. 一种快速的调制度测量轮廓术. 光学学报. 29(7), 1858-1862(2009).

【19】Lu M T, Su X Y, Cao Y P et al. Modulation measuring profilometry with cross grating projection and single shot for dynamic 3D shape measurement. Optics and Lasers in Engineering. 87, 103-110(2016).

【20】Zhong M, Su X Y, Chen W J et al. Modulation measuring profilometry with auto-synchronous phase shifting and vertical scanning. Optics Express. 22(26), 31620-31634(2014).

【21】Smith W J . Modern optical engineering: the design of optical systems. 4th ed. New York:The McGraw-Hill Companies, Inc. 105-124(2012).

【22】Hoang T, Pan B, Nguyen D et al. Generic gamma correction for accuracy enhancement in fringe-projection profilometry. Optics Letters. 35(12), 1992-1994(2010).

引用该论文

Mingteng Lu, Xianyu Su. Vertical Measurement Method for Structured Light Three-Dimensional Profilometry Based on Phase-Shifting and Modulation Ratio[J]. Chinese Journal of Lasers, 2019, 46(7): 0704003

卢明腾, 苏显渝. 基于相移与调制度比的结构光三维面形垂直测量方法[J]. 中国激光, 2019, 46(7): 0704003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF