首页 > 论文 > 光学学报 > 39卷 > 9期(pp:0912001--1)

基于智能检测不变像元的FY-3A/MERSI仪器响应衰变分析

Response Degradation Analysis of Fengyun-3A Medium-Resolution Spectral Imager Based on Intelligent Detection of Invariant Pixels

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种智能方法来分析风云三号A星(FY-3A)中分辨率光谱成像仪(MERSI)的长期响应衰变。该方法通过使用迭代加权多元变化检测(IR-MAD)算法识别同一区域、不同时相卫星图像的不变像元,基于这些不变像元的信号变化评估仪器在该时段的响应衰变。先用IR-MAD方法分析图像场景的不变像元,通过两幅图像不变像元的正交回归获取仪器的相对衰变;再对多个图像对的长时间序列进行分析,采用多项式拟合获得传感器衰变随时间的变化曲线。采用所提方法研究了FY-3A/MERSI北非地区和中国西北部地区的数据,并与其他相关研究得到的仪器衰变结果进行比较。结果显示,所提方法与其他方法获取的仪器衰减规律具有良好的一致性(差异在2%以内),而且从北非地区与中国西北地区得到的结果相吻合(大部分通道的差异在1%以内),验证了本文方法的通用性与可重复性。

Abstract

We develop an intelligent method to monitor the long-term instrumental response degradation of the Fengyun-3A (FY-3A) satellite medium-resolution spectral imager (MERSI). This method assesses the instrumental response degradation during the interval between the capturing of two images using an iteratively reweighted multivariate alteration detection (IR-MAD) algorithm to statistically select invariant pixels from the different-temporal satellite images, which are obtained from the same geographic region. First, the IR-MAD algorithm is used to analyze the invariant pixels from the image scene; subsequently, the orthogonal regression of invariant pixels from two images is conducted to obtain the relative degradation of the sensor during this interval. Next, all the long-term sequence images are processed in a similar manner and the polynomial fitting is used to obtain the relative degradation curve of the sensor over the entire period of time. Herein, we conduct this procedure using the data of FY-3A/MERSI obtained from north Africa and northwestern China, and compare the obtained results with the instrumental degradation results obtained from other relevant researches. The verification results denote that the proposed method is in good agreement with other methods (the difference is less than 2%). The results obtained in north Africa are consistent with those obtained in northwestern China (the differences are less than 1% in majority of the bands), indicating the universality and reproducibility of the proposed method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP731

DOI:10.3788/AOS201939.0912001

所属栏目:仪器,测量与计量

基金项目:国家重点研发计划、国家自然科学基金、科技部重大科学仪器设备开发专项;

收稿日期:2019-02-26

修改稿日期:2019-05-09

网络出版日期:2019-09-01

作者单位    点击查看

王俊伟:北京理工大学光电学院, 北京 100081
胡秀清:中国气象局国家卫星气象中心, 北京 100081中国气象局中国遥感卫星辐射测量和定标重点开放实验室, 北京 100081
何玉青:北京理工大学光电学院, 北京 100081
高昆:北京理工大学光电学院, 北京 100081

联系人作者:胡秀清(huxq@cma.cn)

备注:国家重点研发计划、国家自然科学基金、科技部重大科学仪器设备开发专项;

【1】Heidinger A K and Cao C Y. 107(D23): AAC 11. Sullivan J T. Using moderate resolution imaging spectrometer, MODIS, to calibrate advanced very high resolution radiometer reflectance channels. Journal of Geophysical Research: Atmospheres. (2002).

【2】Chen L, Hu X Q, Xu N et al. The application of deep convective clouds in the calibration and response monitoring of the reflective solar bands of FY-3A/MERSI (medium resolution spectral imager). Remote Sensing. 5(12), 6958-6975(2013).

【3】Teillet P M, Slater P N, Ding Y et al. Three methods for the absolute calibration of the NOAA AVHRR sensors in-flight. Remote Sensing of Environment. 31(2), 105-120(1990).

【4】Dinguirard M and Slater P N. Calibration of space-multispectral imaging sensors. Remote Sensing of Environment. 68(3), 194-205(1999).

【5】Canty M J, Nielsen A A and Schmidt M. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment. 91(3/4), 441-451(2004).

【6】Du Y, Teillet P M and Cihlar J. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment. 82(1), 123-134(2002).

【7】Furby S L and Campbell N A. Calibrating images from different dates to ‘like-value’ digital counts. Remote Sensing of Environment. 77(2), 186-196(2001).

【8】Hall F G, Strebel D E, Nickeson J E et al. Radiometric rectification: toward a common radiometric response among multidate, multisensor images. Remote Sensing of Environment. 35(1), 11-27(1991).

【9】Schott J R, Salvaggio C and Volchok W J. Radiometric scene normalization using pseudoinvariant features. Remote Sensing of Environment. 26(1), 1-16(1988).

【10】Yang X J and Lo C P. Relative radiometric normalization performance for change detection from multi-date satellite images. Photogrammetric Engineering and Remote Sensing. 66(8), 967-980(2000).

【11】Bhatt R, Doelling D, Wu A S et al. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets. Remote Sensing. 6(4), 2809-2826(2014).

【12】Wu A S. Using Dome C for moderate resolution imaging spectroradiometer calibration stability and consistency. Journal of Applied Remote Sensing. 3(1), (2009).

【13】Masonis S J and Warren S G. Gain of the AVHRR visible channel as tracked using bidirectional reflectance of Antarctic and Greenland snow. International Journal of Remote Sensing. 22(8), 1495-1520(2001).

【14】Vermote E and Kaufman Y J. Absolute calibration of AVHRR visible and near-infrared channels using ocean and cloud views. International Journal of Remote Sensing. 16(13), 2317-2340(1995).

【15】Brest C L, Rossow W B and Roiter M D. Update of radiance calibrations for ISCCP. Journal of Atmospheric and Oceanic Technology. 14(5), 1091-1109(1997).

【16】Nielsen A A, Conradsen K and Simpson J J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. Remote Sensing of Environment. 64(1), 1-19(1998).

【17】Schmidt M and King E A. McVicar T R. A method for operational calibration of AVHRR reflective time series data. Remote Sensing of Environment. 112(3), 1117-1129(2008).

【18】Canty M J and Nielsen A A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of Environment. 112(3), 1025-1036(2008).

【19】Dong C H, Yang J, Zhang W J et al. An overview of a new Chinese weather satellite FY-3A. Bulletin of the American Meteorological Society. 90(10), 1531-1544(2009).

【20】Hu X Q, Sun L, Liu J et al. Calibration for the solar reflective bands of medium resolution spectral imager onboard FY-3A. IEEE Transactions on Geoscience and Remote Sensing. 50(12), 4915-4928(2012).

【21】Zhang P, Yang H, Qiu H et al. Quantitative remote sensing from the current fengyun 3 satellites. Advances in Meteorological Science and Technology. 2(4), 6-11(2012).
张鹏, 杨虎, 邱红 等. 风云三号卫星的定量遥感应用能力. 气象科技进展. 2(4), 6-11(2012).

【22】Press W H, Flannery B P, Teukolsky S A et al. Numerical recipes: the art of scientific computing. (1986).

【23】Sun L, Guo M H, Xu N et al. On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration. Spectroscopy and Spectral Analysis. 32(7), 1869-1877(2012).
孙凌, 郭茂华, 徐娜 等. 基于敦煌场地定标的FY-3 MERSI反射太阳波段在轨响应变化分析. 光谱学与光谱分析. 32(7), 1869-1877(2012).

【24】Sun L, Hu X Q, Guo M H et al. Multisite calibration tracking for FY-3A MERSI solar bands. Advances in Meteorological Science and Technology. 3(4), 84-96(2013).
孙凌, 胡秀清, 郭茂华 等. 风云三号A星中分辨率光谱成像仪反射太阳波段的多场地定标跟踪. 气象科技进展. 3(4), 84-96(2013).

【25】Wang L, Hu X Q, Zheng Z J et al. Radiometric calibration tracking detection for FY-3A/MERSI by joint use of snow targets in south and north poles. Acta Optica Sinica. 38(2), (2018).
王玲, 胡秀清, 郑照军 等. 联合南北极冰雪目标的FY-3A/MERSI辐射定标跟踪监测. 光学学报. 38(2), (2018).

引用该论文

Wang Junwei,Hu Xiuqing,He Yuqing,Gao Kun. Response Degradation Analysis of Fengyun-3A Medium-Resolution Spectral Imager Based on Intelligent Detection of Invariant Pixels[J]. Acta Optica Sinica, 2019, 39(9): 0912001

王俊伟,胡秀清,何玉青,高昆. 基于智能检测不变像元的FY-3A/MERSI仪器响应衰变分析[J]. 光学学报, 2019, 39(9): 0912001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF