首页 > 论文 > 激光与光电子学进展 > 56卷 > 20期(pp:202410--1)

连续激光诱导金纳米棒荧光增强效应

Continuous Laser Induced Photoluminescence Enhancement of Au Nanorods

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了解决光学检测中金纳米棒荧光发射强度微弱的问题,通过连续激光照射,加强了金纳米棒局域表面等离子体共振效应,实现了对团聚金纳米棒荧光强度近两个量级的提高,同时具有实时调节金纳米颗粒荧光强度的优势。本文研究了荧光增强效应随激光波长、照射功率密度、金纳米棒长径比与比表面积的变化关系。结果表明,比表面积小的金纳米棒荧光增强效果更好;对于同一种金纳米棒,通过优化照射功率密度,选择与金纳米棒横向等离子体峰共振的波长进行照射可以获得更好的增强效果。

Abstract

To address the problem of the weak photoluminescence (PL) intensity of Au nanorods in optical detection, the PL intensity of Au rods is increased by more than two orders of magnitude via continuous wave laser irradiation based on the enhancement of localized surface plasma resonance, and the PL intensity is adjusted in real time. The variation in PL enhancement with the wavelength, power density of the irradiation laser, and the aspect ratio and surface-to-volume ratio (SVR) of Au nanorods is investigated. Experimental results indicate that Au nanorods with small SVR exhibit better improvement. For certain Au nanorods, this enhancement can be further improved by optimizing laser power density and wavelength that is resonant with the transverse plasma mode of Au nanorods. These results will guide the enhancement of the PL intensity of Au nanorods.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/LOP56.202410

所属栏目:“等离激元新效应与应用”专题

基金项目:国家自然科学基金、山西“1331工程”重点学科、山西省高等学校科技创新项目;

收稿日期:2019-05-21

修改稿日期:2019-07-02

网络出版日期:2019-10-01

作者单位    点击查看

张文学:山西大学激光光谱研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
张晓荣:山西大学激光光谱研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
秦成兵:山西大学激光光谱研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
肖连团:山西大学激光光谱研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:秦成兵(chbqin@sxu.edu.cn)

备注:国家自然科学基金、山西“1331工程”重点学科、山西省高等学校科技创新项目;

【1】Chung H S and Eaton W A. Single-molecule fluorescence probes dynamics of barrier crossing. Nature. 502(7473), 685-688(2013).

【2】Chiang C L, Xu C, Han Z M et al. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science. 344(6186), 885-888(2014).

【3】Yang H, Luo G B, Karnchanaphanurach P et al. Protein conformational dynamics probed by single-molecule electron transfer. Science. 302(5643), 262-266(2003).

【4】Zhou T, Luo T, Song J et al. Phasor-fluorescence lifetime imaging microscopy analysis to monitor intercellular drug release from a pH-sensitive polymeric nanocarrier. Analytical Chemistry. 90(3), 2170-2177(2018).

【5】Urano Y, Asanuma D, Hama Y et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Medicine. 15(1), 104-109(2009).

【6】Jameson D M and Ross J A. Fluorescence polarization/anisotropy in diagnostics and imaging. Chemical Reviews. 110(5), 2685-2708(2010).

【7】Peng M, Bai Z C, Zhang Y et al. Protein detection chip based on quantum dot fluorescence quenching method. Laser & Optoelectronics Progress. 56(6), (2019).
彭嫚, 白忠臣, 张莹 等. 基于量子点荧光猝灭法的蛋白质检测芯片. 激光与光电子学进展. 56(6), (2019).

【8】Huang X M and Deng X. Preparation of fluorescent carbon quantum dots and its application as probe for detection of nitrate ions. Laser & Optoelectronics Progress. 56(7), (2019).
黄小梅, 邓祥. 荧光碳量子点制备及其作为荧光探针对N -O3的检测 . 激光与光电子学进展. 56(7), (2019).

【9】Wegner K D and Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chemical Society Reviews. 44(14), 4792-4834(2015).

【10】Chinen A B, Guan C M, Ferrer J R et al. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical Reviews. 115(19), 10530-10574(2015).

【11】Vogelsang J, Kasper R, Steinhauer C et al. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angewandte Chemie International Edition. 47(29), 5465-5469(2008).

【12】Galland C, Ghosh Y, Steinbrück A et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature. 479(7372), 203-207(2011).

【13】Sperling R A, Gil P R, Zhang F et al. Biological applications of gold nanoparticles. Chemical Society Reviews. 37(9), 1896-1908(2008).

【14】He H, Xie C and Ren J C. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Analytical Chemistry. 80(15), 5951-5957(2008).

【15】Yang Y D, Xu J H, Yang L M et al. Optical properties of gold nanorod and its application in biological imaging and photothermal therapy. Laser & Optoelectronics Progress. 47(7), (2010).
杨玉东, 徐菁华, 杨林梅 等. 金纳米棒的光学性质及其在生物医学成像和光热疗法中的应用. 激光与光电子学进展. 47(7), (2010).

【16】Wang Q Y, Lu G W, Hou L et al. Fluorescence correlation spectroscopy near individual gold nanoparticle. Chemical Physics Letters. 503(4/5/6), 256-261(2011).

【17】Yorulmaz M, Khatua S, Zijlstra P et al. Luminescence quantum yield of single gold nanorods. Nano Letters. 12(8), 4385-4391(2012).

【18】Gaiduk A, Yorulmaz M and Orrit M. Correlated absorption and photoluminescence of single gold nanoparticles. ChemPhysChem. 12(8), 1536-1541(2011).

【19】Yuan H F, Khatua S, Zijlstra P et al. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod. Angewandte Chemie International Edition. 52(4), 1217-1221(2013).

【20】Zhai Y R, Meng L Y, Xu L J et al. Strong fluorescence enhancement with silica-coated Au nanoshell dimers. Plasmonics. 12(2), 263-269(2017).

【21】Han F, Guan Z P, Tan T S et al. Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles. ACS Applied Materials & Interfaces. 4(9), 4746-4751(2012).

【22】Guan Z P, Gao N Y, Jiang X F et al. Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy. Journal of the American Chemical Society. 135(19), 7272-7277(2013).

【23】Tsai M F. Chang S H G, Cheng F Y, et al. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano. 7(6), 5330-5342(2013).

【24】Harris-Birtill D, Singh M, Zhou Y et al. Gold nanorod reshaping in vitro and in vivo using a continuous wave laser. PLoS One. 12(10), (2017).

【25】Qin C B, Zhang X R, He W J et al. Continuous-wave laser-induced welding and giant photoluminescence enhancement of Au nanospheres. Optics Express. 27(3), 2886-2898(2019).

【26】Ruan Q F, Shao L, Shu Y W et al. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Advanced Optical Materials. 2(1), 65-73(2014).

【27】Qiao Z X, Qin C B, He W J et al. Lifetime modulation of graphene oxide film by laser direct writing for the fabrication of micropatterns. Acta Physica Sinica. 67(6), (2018).
乔志星, 秦成兵, 贺文君 等. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报. 67(6), (2018).

【28】Li B, Zhang G F, Jing M Y et al. Single molecule optical- probes measured power law distribution of polymer dynamics. Acta Physica Sinica. 65(21), (2016).
李斌, 张国峰, 景明勇 等. 利用单分子光学探针测量幂律分布的聚合物动力学. 物理学报. 65(21), (2016).

【29】Lu G W, Hou L, Zhang T Y et al. Plasmonic sensing via photoluminescence of individual gold nanorod. The Journal of Physical Chemistry C. 116(48), 25509-25516(2012).

【30】Zhang T S, Gao N Y, Li S et al. Single-particle spectroscopic study on fluorescence enhancement by plasmon coupled gold nanorod dimers assembled on DNA origami. The Journal of Physical Chemistry Letters. 6(11), 2043-2049(2015).

【31】Fang Y, Chang W S, Willingham B et al. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS Nano. 6(8), 7177-7184(2012).

【32】Cai Y Y, Liu J G, Tauzin L J et al. Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. ACS Nano. 12(2), 976-985(2018).

【33】Ye X C, Gao Y Z, Chen J et al. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Letters. 13(5), 2163-2171(2013).

【34】Okuno Y, Nishioka K, Kiya A et al. Uniform and controllable preparation of Au-Ag core-shell nanorods using anisotropic silver shell formation on gold nanorods. Nanoscale. 2(8), 1489-1493(2010).

【35】Wang L B, Zhu Y Y, Xu L G et al. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angewandte Chemie International Edition. 49(32), 5472-5475(2010).

【36】McLintock A, Hunt N and Wark A W. Controlled side-by-side assembly of gold nanorods and dye molecules into polymer-wrapped SERRS-active clusters. Chemical Communications. 47(13), 3757-3759(2011).

【37】Zhang R, Xiao X Z, Lü C et al. Assembling of gold nanorods by femtosecond laser fabrication. Acta Physica Sinica. 63(1), (2014).
张然, 肖鑫泽, 吕超 等. 金纳米棒的飞秒激光组装研究. 物理学报. 63(1), (2014).

引用该论文

Zhang Wenxue,Zhang Xiaorong,Qin Chengbing,Xiao Liantuan. Continuous Laser Induced Photoluminescence Enhancement of Au Nanorods[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202410

张文学,张晓荣,秦成兵,肖连团. 连续激光诱导金纳米棒荧光增强效应[J]. 激光与光电子学进展, 2019, 56(20): 202410

被引情况

【1】刘鹏程,昌梦雨,白忠臣,秦水介. TiN纳米粒子增强CdSe/Al2O3异质结荧光的研究. 中国激光, 2020, 47(9): 913001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF