Matter and Radiation at Extremes, 2020, 5 (6): 065201, Published Online: Nov. 24, 2020   

Development of low-coherence high-power laser drivers for inertial confinement fusion Download: 548次

Author Affiliations
1 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201899, China
2 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
3 School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
Abstract
The use of low-coherence light is expected to be one of the effective ways to suppress or even eliminate the laser–plasma instabilities that arise in attempts to achieve inertial confinement fusion. In this paper, a review of low-coherence high-power laser drivers and related key techniques is first presented. Work at typical low-coherence laser facilities, including Gekko XII, PHEBUS, Pharos III, and Kanal-2 is described. The many key techniques that are used in the research and development of low-coherence laser drivers are described and analyzed, including low-coherence source generation, amplification, harmonic conversion, and beam smoothing of low-coherence light. Then, recent progress achieved by our group in research on a broadband low-coherence laser driver is presented. During the development of our low-coherence high-power laser facility, we have proposed and implemented many key techniques for working with low-coherence light, including source generation, efficient amplification and propagation, harmonic conversion, beam smoothing, and precise beam control. Based on a series of technological breakthroughs, a kilojoule low-coherence laser driver named Kunwu with a coherence time of only 300 fs has been built, and the first round of physical experiments has been completed. This high-power laser facility provides not only a demonstration and verification platform for key techniques and system integration of a low-coherence laser driver, but also a new type of experimental platform for research into, for example, high-energy-density physics and, in particular, laser–plasma interactions.

Yanqi Gao, Yong Cui, Lailin Ji, Daxing Rao, Xiaohui Zhao, Fujian Li, Dong Liu, Wei Feng, Lan Xia, Jiani Liu, Haitao Shi, Pengyuan Du, Jia Liu, Xiaoli Li, Tao Wang, Tianxiong Zhang, Chong Shan, Yilin Hua, Weixin Ma, Xun Sun, Xianfeng Chen, Xiuguang Huang, Jian Zhu, Wenbing Pei, Zhan Sui, Sizu Fu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!