首页 > 论文 > 中国激光 > 47卷 > 1期(pp:106001--1)

室内MIMO ACO-OFDM可见光通信系统接收机设计

Design of Indoor Receiver Using Multiple-Input and Multiple-Output ACO-OFDM Visible Light Communication System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种在室内可见光MIMO通信系统(MIMO-VLC)中使用具有两个不同视场角(FOV)的光电二极管(PD)的角度分集光接收机(2FOV-ADR),其兼具两个不同视场角的接收机(2-FOV)和传统角度分集接收机(ADR)的优点,实现了更优的接收性能。对将LED灯用作数据发射器的典型室内可见光通信场景进行仿真,结果表明,2FOV-ADR均衡器输出端的最小信噪比(minSNR)要高于2-FOV接收机和传统ADR,实现了室内97%的位置的minSNR在45 dB以上,相比于前两种接收机,这一比例分别提高了96%和32%。最后,对使用非对称限幅光正交频分复用(ACO-OFDM)作为调制方案的系统,计算总误码率(BER),给出了迫零和最小均方误差均衡器的结果。结果表明,对于所考虑的室内位置,2FOV-ADR都具有最低的误码率。

Abstract

In this study, we design an angle diversity optical receiver using photodiodes with two different fields of view (FOV) for indoor multiple-input and multiple-output visible light communication systems. The system combines the advantages of the receiver with two different FOV (2-FOV) and traditional angle diversity receiver (ADR) to achieve better reception performance. Furthermore, simulation of a typical indoor visible light communication scenario using light-emitting diode lamps as the data transmitters is performed. In our simulation, the minimum signal-to-noise ratio (minSNR) at the output end of an equalizer in the proposed system is higher than those of the 2-FOV receiver and the conventional ADR, which achieves the minSNR of over 45 dB in 97% of indoor locations. The ratio is increased by 96% and 32% compared to those of the 2-FOV receiver and conventional ADR, respectively. Finally, the total bit error rate is calculated for the system using asymmetrically clipped optical orthogonal frequency division multiplexing as the modulation scheme, and the results of the zero-forcing equalizer and minimum mean square error equalizer are given. The results demonstrate that the proposed receiver has the lowest bit error rate for the indoor locations under consideration.

广告组6 - 调制器
补充资料

中图分类号:TN929.12

DOI:10.3788/CJL202047.0106001

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、大连海事大学研究生教育教学改革研究项目;

收稿日期:2019-07-05

修改稿日期:2019-09-06

网络出版日期:2020-01-01

作者单位    点击查看

张琦:大连海事大学信息科学技术学院, 辽宁 大连 116026
岳殿武:大连海事大学信息科学技术学院, 辽宁 大连 116026

联系人作者:岳殿武(dwyue@dlmu.edu.cn)

备注:国家自然科学基金、大连海事大学研究生教育教学改革研究项目;

【1】Elgala H, Mesleh R, Haas H. Indoor optical wireless communication: potential and state-of-the-art [J]. IEEE Communications Magazine. 2011, 49(9): 56-62.

【2】Grubor J, Randel S, Langer K D, et al. Broadband information broadcasting using LED-based interior lighting [J]. Journal of Lightwave Technology. 2008, 26(24): 3883-3892.

【3】Chi N, Lu X Y, Wang C, et al. High-speed visible light communication based on LED [J]. Chinese Journal of Lasers. 2017, 44(3): 0300001.
迟楠, 卢星宇, 王灿, 等. 基于LED的高速可见光通信 [J]. 中国激光. 2017, 44(3): 0300001.

【4】Jia K J, Hao L, Yu C H. Modeling of multipath channel and performance analysis of MIMO-ACO-OFDM system for indoor visible light communications [J]. Acta Optica Sinica. 2016, 36(7): 0706005.
贾科军, 郝莉, 余彩虹. 室内可见光通信多径信道建模及MIMO-ACO-OFDM系统性能分析 [J]. 光学学报. 2016, 36(7): 0706005.

【5】Fath T, Haas H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments [J]. IEEE Transactions on Communications. 2013, 61(2): 733-742.

【6】Nuwanpriya A, Ho S W, Chen C S. Indoor MIMO visible light communications: novel angle diversity receivers for mobile users [J]. IEEE Journal on Selected Areas in Communications. 2015, 33(9): 1780-1792.

【7】He C W, Wang T Q, Armstrong J. Performance of optical receivers using photodetectors with different fields of view in a MIMO ACO-OFDM system [J]. Journal of Lightwave Technology. 2015, 33(23): 4957-4967.

【8】Wang T Q, Sekercioglu Y A, Armstrong J. Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications [J]. Journal of Lightwave Technology. 2013, 31(11): 1744-1754.

【9】Jiang R, Wang Z C, Zhu X D, et al. Interference-free LED allocation for visible light communications with fisheye lens [J]. Journal of Lightwave Technology. 2018, 36(3): 626-636.

【10】Wang T Q, Green R J, Armstrong J. MIMO optical wireless communications using ACO-OFDM and a prism-array receiver [J]. IEEE Journal on Selected Areas in Communications. 2015, 33(9): 1959-1971.

【11】Wang T Q, He C W, Armstrong J. Angular diversity for indoor MIMO optical wireless communications . [C]∥2015 IEEE International Conference on Communications (ICC), June 8-12, 2015, London, UK. New York: IEEE. 2015, 5066-5071.

【12】Kahn J M, Barry J R. Wireless infrared communications [J]. Proceedings of the IEEE. 1997, 85(2): 265-298.

【13】Song X Q, Wang M Y, Xing S, et al. Progress of orthogonal frequency division multiplexing based on visible light communication [J]. Laser & Optoelectronics Progress. 2018, 55(12): 120008.
宋小庆, 王慕煜, 邢松, 等. 基于可见光通信的正交频分复用技术研究进展 [J]. 激光与光电子学进展. 2018, 55(12): 120008.

【14】Dissanayake S D, Armstrong J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems [J]. Journal of Lightwave Technology. 2013, 31(7): 1063-1072.

【15】Jia K J, Jin B, Hao L, et al. Performance analysis of DCO-OFDM and ACO-OFDM systems in indoor visible light communications [J]. Chinese Journal of Lasers. 2017, 44(8): 0806003.
贾科军, 靳斌, 郝莉, 等. 室内可见光通信中DCO-OFDM和ACO-OFDM系统性能分析 [J]. 中国激光. 2017, 44(8): 0806003.

【16】Wang K G. MIMO-OFDM visible light communication system design [D]. Nanjing: Southeast University. 2017, 29-34.
王凯歌. MIMO-OFDM可见光通信系统方案设计 [D]. 南京: 东南大学. 2017, 29-34.

【17】Jiang Y, Varanasi M K, Li J. Performance analysis of ZF and MMSE equalizers for MIMO systems: an in-depth study of the high SNR regime [J]. IEEE Transactions on Information Theory. 2011, 57(4): 2008-2026.

【18】Armstrong J. Schmidt B J C, Kalra D, et al. SPC07-4: performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system . [C]∥IEEE Globecom 2006, November 27-December 1, 2006, San Francisco, CA, USA. New York: IEEE. 2006, 10288952.

引用该论文

Zhang Qi,Yue Dianwu. Design of Indoor Receiver Using Multiple-Input and Multiple-Output ACO-OFDM Visible Light Communication System[J]. Chinese Journal of Lasers, 2020, 47(1): 0106001

张琦,岳殿武. 室内MIMO ACO-OFDM可见光通信系统接收机设计[J]. 中国激光, 2020, 47(1): 0106001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF