首页 > 论文 > 中国激光 > 47卷 > 9期(pp:910003--1)

相干调频连续波激光雷达畸变补偿技术研究

Distortion Compensation Technology of Coherent Frequency Modulation Continuous Wave Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

扫描激光雷达在无人驾驶系统中起着不可替代的作用,是近几年的研究热点。由于多脉冲周期之间每个点的时刻皆不相同,激光雷达与成像目标之间的相对运动会造成目标三维图像重构的畸变,因此必须进行补偿才能够实现真正的高精度三维成像。为此,提出了一种基于相干调频连续波激光雷达速度测量对于运动产生畸变进行逐点补偿的方法。仿真与实验结果表明,速度相对误差和成像距离误差分别为0.52%和±4.76 cm。与传统加速度计方法相比,本文方法不依赖于加速度计等外部测量,具有更高的普适性,对于激光雷达的实际应用具有重要意义。

Abstract

Scanning lidar plays an irreplaceable role in driverless system, which is a research hotspot in recent years. Because the time of each point is different between the multi pulse periods, and the relative motion between the lidar and the imaging target will cause the distortion of the three-dimensional (3D) image reconstruction of the target, so it is necessary to compensate for the real high-precision 3D imaging. In this paper, a point by point compensation method for motion distortion based on the velocity measurement of coherent frequency modulated continuous wave lidar is proposed. The simulation and experimental results show that the relative velocity error and imaging distance error are 0.52% and ±4.76 cm, respectively. Compared with the traditional accelerometer method, the proposed method does not rely on external measurement such as accelerometer, and has higher universality, which is of great significance for the practical application of lidar.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN958.98

DOI:10.3788/CJL202047.0910003

所属栏目:遥感与传感器

基金项目:国家自然科学基金;

收稿日期:2020-02-27

修改稿日期:2020-05-06

网络出版日期:2020-09-01

作者单位    点击查看

蔡新雨:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
孙建锋:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
卢智勇:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
李跃新:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
从海胜:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
韩荣磊:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800

联系人作者:孙建锋(sunjianfengs@163.com)

备注:国家自然科学基金;

【1】Manandhar D, Shibasaki R. Vehicle-borne laser mapping system (VLMS) for 3D GIS . [C]∥IEEE International Geoscience & Remote Sensing Symposium. IEEE. 2001.

【2】Zhang L S, Cheng X J. Tunnel deformation analysis based on lidar points [J]. Chinese Journal of Lasers. 2018, 45(4): 0404004.
张立朔, 程效军. 基于激光点云的隧道形变分析方法 [J]. 中国激光. 2018, 45(4): 0404004.

【3】Uchino O, Tabata I. Mobile lidar for simultaneous measurements of ozone, aerosols, and temperature in the stratosphere [J]. Applied Optics. 1991, 30(15): 2005-2012.

【4】Weibring P, Edner H, Svanberg S. Versatilemobile lidar system for environmental monitoring [J]. Applied Optics. 2003, 42(18): 3583-3594.

【5】Carmer D C, Peterson L M. Laser radar in robotics [J]. Proceedings of the IEEE. 1996, 84(2): 299-320.

【6】-01-17 [P]. Hall D S. High definition lidar system: US7969558B2. . 2008.

【7】Pacala A, T Y, weak signal detection, signal disambiguation. -07-31 [P]. method of using same: US20140211194. 2014.

【8】Matsubara H, Soga M, Niclass C, et al. Development of next generation LIDAR [J]. R&D Review of Toyota CRDL. 2012, 43(1): 7-12.

【9】Xie G C, Ye Y D, Li J M, et al. Echo characteristics and range error for pulse laser ranging [J]. Chinese Journal of Lasers. 2018, 45(6): 0610001.
谢庚承, 叶一东, 李建民, 等. 脉冲激光测距回波特性及测距误差研究 [J]. 中国激光. 2018, 45(6): 0610001.

【10】Feng C Z, Wu S H, Liu B Y. Research on wind retrieval method of coherent Doppler lidar and experimental verification [J]. Chinese Journal of Lasers. 2018, 45(4): 0410001.
冯长中, 吴松华, 刘秉义. 相干多普勒激光雷达风场反演方法研究与实验印证 [J]. 中国激光. 2018, 45(4): 0410001.

【11】Mao X S, Inoue D, Matsubara H, et al. E95 . 2012, B(8): 2631-2637.

【12】Moreira J R. A new method of aircraft motion error extraction from radar raw data for real time motion compensation [J]. IEEE Transactions on Geoscience and Remote Sensing. 1990, 28(4): 620-626.

【13】Ilas C. Electronic sensing technologies for autonomous ground vehicles: , 2013, 1-6.

【14】Teichman A, Levinson J, Thrun S. Towards 3D object recognition via classification of arbitrary object tracks[C]∥2011 IEEE International Conference on Robotics and Automation. 9-13 May 2011, Shanghai, China. New York: , 2011, 4034-4041.

【15】Harbor L K. Space-based interceptor hardware-in-the-loop simulation featuring IR scene projection and dual-sensor IR and lidar signal injection [J]. Proceedings of SPIE. 1996, 2741: 439-446.

【16】Marlton G J, Harrison R G, Nicoll K A, et al. Note: a balloon-borne accelerometer technique for measuring atmospheric turbulence [J]. The Review of Scientific Instruments. 2015, 86(1): 016109.

【17】Sun J F, Zhou Y, Lu Z Y, et al. Scanning lidar technology based on FMCW . C]∥2017 Optical Technology Symposium and Interdisciplinary Forum. 2017, 16-21.
孙建锋, 周煜, 卢智勇, 等. 基于调频连续波的扫描激光雷达技术 . C]∥2017年光学技术研讨会暨交叉学科论坛论文集. 2017, 16-21.

引用该论文

Cai Xinyu,Sun Jianfeng,Lu Zhiyong,Li Yuexin,Cong Haisheng,Han Ronglei. Distortion Compensation Technology of Coherent Frequency Modulation Continuous Wave Lidar[J]. Chinese Journal of Lasers, 2020, 47(9): 0910003

蔡新雨,孙建锋,卢智勇,李跃新,从海胜,韩荣磊. 相干调频连续波激光雷达畸变补偿技术研究[J]. 中国激光, 2020, 47(9): 0910003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF