首页 > 论文 > 光学学报 > 40卷 > 8期(pp:0811001--1)

无遮拦离轴天文望远镜偏振像差分析及其对光学椭率的影响 (封面文章)

Polarization Aberrations in an Unobscured Off-Axis Astronomical Telescope and Their Effects on Optics Ellipticity (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着天文探测水平的提高,偏振像差对天文望远镜成像质量的影响逐渐凸显。基于偏振光线追迹,分析了一种用于探测宇宙弱引力透镜效应的无遮拦离轴天文望远镜的偏振像差,得到了该望远镜的琼斯瞳、振幅响应矩阵以及望远镜中各个反射镜的二向衰减和相位延迟分布特性。计算发现偏振像差会影响该望远镜的成像对比度,同时还会改变其点扩展函数的空间分布。计算了偏振像差对望远镜光学椭率的影响,结果表明偏振像差会导致该望远镜光学椭率在全视场范围内发生不同程度的变化,最大改变量为7.5×10 -3,平均改变量为2.7×10 -3。在视场[-0.0487°,0.155°]附近,偏振像差使得该望远镜光学椭率最大插值误差由1.2×10 -4增大为1.1×10 -3。本文研究结果表明,对于探测弱引力透镜效应等要求超高成像质量的天文望远镜,偏振像差不可忽略,需要进行优化设计。

Abstract

Because of the continuously increasing detection ability in astronomy, polarization aberrations are playing increasingly important roles in the performance of astronomical telescopes. In this paper, the polarization aberrations of an unobscured off-axis astronomical telescope used to detect weak gravitational lensing effect are analyzed using polarization ray tracing. The diattenuation map and retardance map of each mirror for the telescope are obtained, and both its Jones pupil and amplitude response matrix are determined. It is found that the polarization aberrations of the telescope have an impact on both the imaging contrast and the spatial distribution of the point spread function (PSF). The optics ellipticity of the telescope is analyzed. The variations of optics ellipticity, which are dependent on the field of view (FOV), are induced by polarization aberrations. The maximum and mean variations of the optics ellipticity in all FOVs are 7.5×10 -3 and 2.7×10 -3, respectively. At the FOV [-0.0487°, 0.155°], the maximum ellipticity interpolation error increases from 1.2×10 -4 to 1.1×10 -3. Our analyses reveal that polarization aberrations should not be ignored and should be optimized in telescopes that require ultrahigh imaging performance, such as those used for detecting weak gravitational lensing effect.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439; P111.21

DOI:10.3788/AOS202040.0811001

所属栏目:成像系统

基金项目:国家自然科学基金;

收稿日期:2019-10-31

修改稿日期:2019-12-30

网络出版日期:2020-04-01

作者单位    点击查看

罗敬:中国科学院长春光学精密机械与物理研究所空间三部, 吉林 长春 130033
何煦:中国科学院长春光学精密机械与物理研究所空间三部, 吉林 长春 130033
范阔:中国科学院长春光学精密机械与物理研究所空间三部, 吉林 长春 130033中国科学院大学, 北京 100049
张晓辉:中国科学院长春光学精密机械与物理研究所空间三部, 吉林 长春 130033
董吉洪:中国科学院长春光学精密机械与物理研究所空间三部, 吉林 长春 130033

联系人作者:罗敬(luojingopt@ciomp.ac.cn)

备注:国家自然科学基金;

【1】Chipman R A. Polarization aberrations [D]. Tucson: University of Arizona. 1987.

【2】Breckinridge J B. Lam W S T, Chipman R A. Polarization aberrations in astronomical telescopes: the point spread function [J]. Publications of the Astronomical Society of the Pacific. 2015, 127(951): 445-468.

【3】Meng Z J, Li S K, Wang X Z, et al. Polarization aberration measurement method based on principal component analysis of differential aerial images [J]. Acta Optica Sinica. 2019, 39(7): 0712006.
孟泽江, 李思坤, 王向朝, 等. 基于差分空间像主成分分析的偏振像差检测方法 [J]. 光学学报. 2019, 39(7): 0712006.

【4】Li C Y, Lu W G, Qiao L. Analysis and research of polarization aberration in rapid space angle measuring system [J]. Acta Physica Sinica. 2018, 67(3): 0307037.
李春艳, 陆卫国, 乔琳. 快速空间测角系统中偏振像差的分析与研究 [J]. 物理学报. 2018, 67(3): 0307037.

【5】Yang Y F, Yan C X, Hu C H, et al. Polarization aberration analysis of coherent laser communication system [J]. Acta Optica Sinica. 2016, 36(11): 1106003.
杨宇飞, 颜昌翔, 胡春晖, 等. 相干激光通信光学系统偏振像差研究 [J]. 光学学报. 2016, 36(11): 1106003.

【6】Qiu B W. Analysis and simulation for polarization aberration of spatial optical system [D]. Hangzhou: Zhejiang University. 2010.
邱宝玮. 空间光学系统中偏振像差的分析和模拟 [D]. 杭州: 浙江大学. 2010.

【7】Wang J Y, Li Y C, Shi H D, et al. Study on polarization characteristics of full-field and full-pupil in refractive and reflection telephoto system [J]. Infrared and Laser Engineering. 2019, 48(3): 0318004.
王稼禹, 李英超, 史浩东, 等. 折反式望远系统全视场全口径偏振特性研究 [J]. 红外与激光工程. 2019, 48(3): 0318004.

【8】Wang G C, Wang J L, Zhang Z D, et al. Polarization analysis of the telescope system used for space target polarization detection [J]. Acta Optica Sinica. 2014, 34(12): 1211003.
王国聪, 王建立, 张振铎, 等. 用于空间目标偏振探测的望远镜系统偏振分析 [J]. 光学学报. 2014, 34(12): 1211003.

【9】Luo J, Liu D, Huang Z H, et al. Polarization properties of receiving telescopes in atmospheric remote sensing polarization lidars [J]. Applied Optics. 2017, 56(24): 6837-6845.

【10】Luo J. Research on key technologies and system of high-precision polarization lidar [D]. Hangzhou: Zhejiang University. 2018.
罗敬. 高精度偏振激光雷达关键技术及系统研究 [D]. 杭州: 浙江大学. 2018.

【11】de Juan Ovelar M, Snik F, Keller C U, et al. Instrumental polarisation at the Nasmyth focus of the E-ELT [J]. Astronomy & Astrophysics. 2014, 562: A8.

【12】Anche R M, Anupama G, Sriram S, et al. Estimation of polarization aberrations and its effect on the point spread function of the Thirty Meter Telescope [J]. Proceedings of SPIE. 2018, 10703: 107034K.

【13】de Juan Ovelar M, Snik F, Keller C U. M&m''''s: an error budget and performance simulator code for polarimetric systems [J]. Proceedings of SPIE. 2011, 8160: 81600C.

【14】Atwood J, Skidmore W, Anupama G C, et al. Polarimetric analysis of the thirty meter telescope (TMT) for modeling instrumental polarization characteristics [J]. Proceedings of SPIE. 2014, 9150: 915013.

【15】Zeng F, Zhang X, Zhang J P, et al. Optics ellipticity performance of an unobscured off-axis space telescope [J]. Optics Express. 2014, 22(21): 25277-25285.

【16】Kuhn J R, Hawley S L. Some astronomical performance advantages of off-axis telescopes [J]. Publications of the Astronomical Society of the Pacific. 1999, 111(759): 601-620.

【17】Bartelmann M, Schneider P. Weak gravitational lensing [J]. Physics Reports. 2001, 340(4/5): 291-472.

【18】Kaiser N, Squires G, Broadhurst T. A method for weak lensing observations [J]. The Astrophysical Journal Letters. 1995, 449: 460-475.

【19】Erben T, van Waerbeke L, Bertin E, et al. How accurately can we measure weak gravitational shear? [J]. Astronomy & Astrophysics. 2001, 366(3): 717-735.

【20】Laureijs R, Amiaux J, Arduini S, et al. -10-14)[2019-10-02] . https:∥arxiv. 2011, org/abs/1110: 3193.

【21】Debes J H, Ygouf M, Choquet E, et al. -11-19)[2019-10-02] . https:∥arxiv. 2015, org/abs/1511: 06277.

【22】Jarvis M K, Schechter P, Jain B. Telescope optics. -10-01)[2019-10-02] . https:∥arxiv. 2008, org/abs/0810: 0027.

【23】McPeak K M, Jayanti S V, Kress S J P, et al. Plasmonic films can easily be better: rules and recipes [J]. ACS Photonics. 2015, 2(3): 326-333.

【24】Goldstein D. Polarized light[M]. New York: , 2003.

【25】Chipman R A, Young G. Lam W S T. Polarized light and optical systems[M]. New York: , 2018.

【26】Ruoff J, Totzeck M. Orientation Zernike polynomials: a useful way to describe the polarization effects of optical imaging systems [J]. Journal of Micro/Nanolithography, MEMS and MOEMS. 2009, 8(3): 031404.

【27】McGuire J P, Chipman R A. Diffraction image formation in optical systems with polarization aberrations I: formulation and example [J]. Journal of the Optical Society of America A. 1990, 7(9): 1614-1626.

【28】Mandelbaum R, Rowe B, Bosch J, et al. The third gravitational lensing accuracy testing (great3) challenge handbook [J]. The Astrophysical Journal Letters Supplement Series. 2014, 212(5): 1-28.

引用该论文

Luo Jing,He Xu,Fan Kuo,Zhang Xiaohui,Dong Jihong. Polarization Aberrations in an Unobscured Off-Axis Astronomical Telescope and Their Effects on Optics Ellipticity[J]. Acta Optica Sinica, 2020, 40(8): 0811001

罗敬,何煦,范阔,张晓辉,董吉洪. 无遮拦离轴天文望远镜偏振像差分析及其对光学椭率的影响[J]. 光学学报, 2020, 40(8): 0811001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF