首页 > 论文 > 光学学报 > 40卷 > 12期(pp:1206003--1)

机械微弯长周期光纤光栅矢量模耦合特性研究

Properties of Vector Mode Coupling in Mechanically Induced Microbend Long-Period Fiber Gratings

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对机械微弯长周期光纤光栅的基模HE11到高阶纤芯矢量模式(TE01、TM01和HE21)的耦合特性,分析了阶跃型和反抛物线型两种少模光纤结构下机械微弯长周期光纤光栅的光栅周期、微弯幅度和耦合系数等参数对矢量模式耦合的影响。研究结果表明,耦合系数是模式耦合过程中的关键,通过施加压力改变光纤的微弯幅度可以有效调谐光栅矢量模式的耦合强度。基于反抛物线型光纤结构的机械微弯长周期光纤光栅可以特定波长激发特定的高阶矢量模式(TE01、TM01和HE21),并且由基模向高阶模式转换的谐振波长可调谐。该机械微弯长周期光纤光栅在矢量模式复用、轨道角动量的产生和复用领域有潜在的应用价值。

Abstract

In this study, we intend to determine the coupling properties of the fundamental mode HE11 with respect to the high-order core vector modes (TE01, TM01, and HE21) in case of the mechanically induced microbend long-period fiber gratings (MLPGs). Therefore, the effects of various parameters, including the grating period, microbend amplitude, and coupling coefficient, on the coupling of the vector modes in the MLPGs were analyzed with respect to the step-index and inverse-parabolic-index fibers. The results denote that the coupling coefficient plays a critical role during the mode coupling process and that the strength of vector mode coupling can be effectively tuned by applying pressure to vary the microbend amplitude of the fibers. The MLPGs of the inverse-parabolic-index fiber can convert the high-order vector modes (TE01, TM01, and HE21) at specific wavelengths, and the resonant wavelength obtained using the high-order mode can be tuned. The MLPGs possess potential application value with respect to vector mode multiplexing, orbital angular momentum generation, and multiplexing.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN253

DOI:10.3788/AOS202040.1206003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金;

收稿日期:2019-11-27

修改稿日期:2020-03-16

网络出版日期:2020-06-01

作者单位    点击查看

陶洪:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
芈月安:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
古皓:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
李雪健:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
任文华:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
简伟:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
任国斌:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044

联系人作者:任国斌(gbren@bjtu.edu.cn)

备注:国家自然科学基金;

【1】Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres [J]. Nature Photonics. 2013, 7(5): 354-362.

【2】Sillard P, Bigot-Astruc M, Molin D. Few-mode fibers for mode-division-multiplexed systems [J]. Journal of Lightwave Technology. 2014, 32(16): 2824-2829.

【3】Carpenter J, Thomsen B C, Wilkinson T D. Degenerate mode-group division multiplexing [J]. Journal of Lightwave Technology. 2012, 30(24): 3946-3952.

【4】Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science. 2013, 340(6140): 1545-1548.

【5】Wang A D, Zhu L, Chen S, et al. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber [J]. Optics Express. 2016, 24(11): 11716-11726.

【6】Salsi M, Koebele C, Sperti D, et al. Mode-division multiplexing of 2×100 Gb/s channels using an LCOS-based spatial modulator [J]. Journal of Lightwave Technology. 2012, 30(4): 618-623.

【7】Ryf R, Randel S, Gnauck A H, et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing [J]. Journal of Lightwave Technology. 2012, 30(4): 521-531.

【8】Gross S, Riesen N, Love J D, et al. Three-dimensional ultra-broadband integrated tapered mode multiplexers [J]. Laser & Photonics Reviews. 2014, 8(5): L81-L85.

【9】Leon-Saval S G, Fontaine N K, Salazar-Gil J R, et al. Mode-selective photonic lanterns for space-division multiplexing [J]. Optics Express. 2014, 22(1): 1036-1044.

【10】Gao Y, Sun J Q, Chen G D, et al. Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings [J]. Optics Express. 2015, 23(8): 9959-9967.

【11】Ramachandran S, Wang Z Y, Yan M. Bandwidth control of long-period grating-based mode converters in few-mode fibers [J]. Optics Letters. 2002, 27(9): 698-700.

【12】Guo Y C, Liu Y G, Wang Z, et al. Dual resonance and dual-parameter sensor of few-mode fiber long period grating [J]. Acta Optica Sinica. 2018, 38(9): 0906003.
郭艳城, 刘艳格, 王志, 等. 少模光纤长周期光栅双峰谐振及双参量传感 [J]. 光学学报. 2018, 38(9): 0906003.

【13】Xue Y R, Tian P F, Jin W, et al. Superimposed long period gratings based mode converter in few-mode fiber [J]. Acta Physica Sinica. 2019, 68(5): 135-141.
薛艳茹, 田朋飞, 金娃, 等. 基于少模长周期光纤叠栅的模式转换器 [J]. 物理学报. 2019, 68(5): 135-141.

【14】Zhang W D, Wei K Y, Huang L G, et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating [J]. Optics Express. 2016, 24(17): 161-204.

【15】Savin S. Digonnet M J F, Kino G S, et al. Tunable mechanically induced long-period fiber gratings [J]. Optics Letters. 2000, 25(10): 710-712.

【16】Chen C J, Zhou X J, Lan L, et al. Study on long-period fiber gratings based on micro-bend effect [J]. Acta Optica Sinica. 2010, 30(7): 1955-1959.
陈成金, 周晓军, 兰岚, 等. 基于微弯效应的长周期光纤光栅的研究 [J]. 光学学报. 2010, 30(7): 1955-1959.

【17】Shi S H, Zhao M F, Luo B B, et al. Spectral characteristics of helicoidal mechanically-induced long-period fiber grating [J]. Optics and Precision Engineering. 2017, 25(7): 1771-1776.
石胜辉, 赵明富, 罗彬彬, 等. 扭转螺旋型力学微弯长周期光纤光栅的光谱特性 [J]. 光学精密工程. 2017, 25(7): 1771-1776.

【18】Giles I, Obeysekara A, Chen R S, et al. Fiber LPG mode converters and mode selection technique for multimode SDM [J]. IEEE Photonics Technology Letters. 2012, 24(21): 1922-1925.

【19】Yang X, Xu Z H, Chen S P, et al. High power LP11 mode supercontinuum generation from an all-fiber MOPA [J]. Optics Express. 2018, 26(11): 13740-13745.

【20】Li S H, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter [J]. Optics Letters. 2015, 40(18): 4376-4379.

【21】Ndagano B, Brüning R. McLaren M, et al. Fiber propagation of vector modes [J]. Optics Express. 2015, 23(13): 17330-17336.

【22】Zhang W D, Huang L G, Wei K Y, et al. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion [J]. Optics Letters. 2016, 41(21): 5082-5085.

【23】Nejad R M, Allahverdyan K, Vaity P, et al. Mode division multiplexing using orbital angular momentum modes over 1.4-km ring core fiber [J]. Journal of Lightwave Technology. 2016, 34(18): 4252-4258.

【24】Mao D, He Z W, Lu H, et al. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers [J]. Optics Letters. 2018, 43(7): 1590-1593.

【25】Wang C C. Research on the period-pressure induced fiber filters [D]. Chengdu: University of Electronic Science and Technology of China. 2012.
王超超. 周期压力式光纤滤波器研究 [D]. 成都: 电子科技大学. 2012.

【26】Hwang I K, Yun S H, Kim B Y. Long-period fiber gratings based on periodic microbends [J]. Optics Letters. 1999, 24(18): 1263-1265.

【27】Lu Y C, Huang W P, Jian S S. Full vector complex coupled mode theory for tilted fiber gratings [J]. Optics Express. 2010, 18(2): 713-726.

【28】Huang W P, Mu J W. Complex coupled-mode theory for optical waveguides [J]. Optics Express. 2009, 17(21): 19134-19152.

【29】Lu Y C, Yang L, Huang W P, et al. Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry [J]. Journal of Lightwave Technology. 2008, 26(13): 1868-1876.

【30】Erdogan T. Fiber grating spectra [J]. Journal of Lightwave Technology. 1997, 15(8): 1277-1294.

引用该论文

Tao Hong,Mi Yuean,Gu Hao,Li Xuejian,Ren Wenhua,Jian Wei,Ren Guobin. Properties of Vector Mode Coupling in Mechanically Induced Microbend Long-Period Fiber Gratings[J]. Acta Optica Sinica, 2020, 40(12): 1206003

陶洪,芈月安,古皓,李雪健,任文华,简伟,任国斌. 机械微弯长周期光纤光栅矢量模耦合特性研究[J]. 光学学报, 2020, 40(12): 1206003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF