首页 > 论文 > Chinese Optics Letters > 17卷 > 7期(p:070603)

Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A novel predictive dynamic bandwidth allocation (DBA) method based on the long short-term memory (LSTM) neural network is proposed for a 10-gigabit-capable passive optical network in mobile front-haul (MFH) links. By predicting the number of packets that arrive at the optical network unit buffer based on LSTM, the round-trip time delay in traditional DBAs can be eliminated to meet the strict latency requirement for MFH links. Our study shows that the LSTM neural network has better performance than feed-forward neural networks. Based on extensive simulations, the proposed scheme is found to be able to achieve the latency requirement for MFH and outperforms the traditional DBAs in terms of delay, jitter, and packet loss ratio.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/COL201917.070603

所属栏目:Fiber optics and optical communications

基金项目:This work was supported by the National Natural Science Foundation of China (Nos.?61471088 and 61420106011).

收稿日期:2019-01-28

录用日期:2019-04-12

网络出版日期:2019-07-12

作者单位    点击查看

Min Zhang:Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
Bo Xu:Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
Xiaoyun Li:Business School, University of International Business and Economics, Beijing 100029, China
Yi Cai:Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
Baojian Wu:Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
Kun Qiu:Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China

联系人作者:Bo Xu(xubo@uestc.edu.cn)

备注:This work was supported by the National Natural Science Foundation of China (Nos.?61471088 and 61420106011).

【1】I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang and L. Li. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. IEEE Access. 2, (2014).

【2】A. Pizzinat, P. Chanclou, T. Diallo and F. Saliou. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Proceedings of ECOC. (2014).

【3】D. Hisano, H. Uzawa, Y. Nakayama, H. Nakamura, J. Terada and A. Otaka. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. IEEE J. Sel. Areas Commun. 36, (2018).

【4】. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. (2016).

【5】J. Zheng and H. T. Mouftah. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Opt. Switch. Netw. 6, (2009).

【6】Z. Xie, H. Li and Y. Ji. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Chin. Opt. Lett. 7, (2009).

【7】T. Kobayashi, H. Ou, D. Hisano, T. Shimada, J. Terada and A. Otaka. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Proceedings. of OFC. (2016).

【8】A. M. Mikaeil, W. Hu, T. Ye and S. B. Hussain. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. IEEE/OSA J. Opt. Commun. Netw. 9, (2017).

【9】A. M. Mikaeil, W. Hu and S. B. Hussain. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Proceedings of ICTON. (2018).

【10】F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini and M. Tornatore. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. (2018).

【11】H. Huang, A. Yang, L. Feng, G. Ni and P. Guo. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Chin. Opt. Lett. 15, (2017).

【12】J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan and M. Chamania. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Opt. Switch. Netw. 28, (2018).

【13】Y. Bengio, P. Simard and P. Frasconi. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. IEEE Trans. Neural Netw. 5, (2002).

【14】S. Hochreiter and J. Schmidhuber. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Neural Comput. 9, (1997).

【15】G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Comput. Sci. 3, (2012).

【16】I. Goodfellow, Y. Bengio and A. Courville. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. (2016).

【17】D. Ammar, T. Begin and I. Guerin-Lassous. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Conference of ICST. (2011).

【18】G. F. Riley and T. R. Henderson. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. The ns-3 Network Simulator. (2010).

【19】X. Wu, K. N. Brown, C. J. Sreenan, P. Alvarez, M. Ruffini, N. Marchetti, D. Payne and L. Doyle. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON. Conference on ICST 195. (2013).

引用该论文

Min Zhang,  Bo Xu,  Xiaoyun Li,  Yi Cai,  Baojian Wu,  Kun Qiu, "Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON," Chinese Optics Letters 17(7), 070603 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF