首页 > 论文 > 光学学报 > 40卷 > 17期(pp:1701001--1)


BRRDF Simulation Research on Detection Parameters of Oil-in-Water Emulsion of Oil Spill on Sea Surface

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


激光诱导荧光(LIF)是一种有效的海面溢油遥感探测技术,双向反射辐射再分布函数(BRRDF)可以描述介质表面入射激光与出射荧光的量值关系,为LIF技术探测海面溢油污染提供理论指导。基于蒙特卡罗方法建立了海面溢油水包油乳化液的光子传输模型,利用米散射理论计算水包油乳化液的固有光学参数,分析其在不同乳化时间、荧光波长、探测接收角度下的BRRDF与光子出射、入射天顶角余弦的乘积XBRRDFcos θr cos θi。仿真结果表明,随着水包油乳化液乳化时间的增加, XBRRDFcosθrcosθi整体呈上升趋势,且在荧光量子产率较大的荧光波长处较大。收发共轴LIF系统的接收光功率受探测接收角度、水包油乳化液的厚度和浓度的影响,当探测接收角度小于50°时,系统的接收光功率较大。


Laser induced fluorescence (LIF) is an effective remote sensing technology for detecting oil spills on the sea surface. Bidirectional reflectance and reradiation distribution function (BRRDF) can describe the quantitative relationship between the incident laser and the emission fluorescence on the surface of mediums, which provides theoretical guidance for LIF technology to detect oil spill pollution on the sea surface. Based on Monte Carlo method, the photon transmission model of oil-in-water emulsion is established. The intrinsic optical parameters of oil-in-water emulsion are calculated by using the Mie scattering theory. The product of BRRDF and the cosine of photon emission and incident zenith angles XBRRDFcos θrcos θi is analyzed under different emulsifying time, fluorescence wavelength, and detection receiving angle. Simulation results show that with the increase of emulsifying time of oil-in-water emulsion, XBRRDFcos θr cos θi is an overall upward trend, and it is larger at the fluorescence wavelength where the fluorescence quantum yield is larger. The receiving optical power received by the transceiver coaxial LIF system is affected by its detection-receiving angles, thickness and concentration of oil-in-water emulsion, When the detection receiving angle is less than 50°, the received optical power of the system is larger.

广告组1 - 空间光调制器+DMD








作者单位    点击查看

张晓丹:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
孔德明:燕山大学电气工程学院, 河北 秦皇岛 066004
袁丽:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
孔德翰:河北环境工程学院信息工程系, 河北 秦皇岛 066000
孔令富:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
贾海阳:燕山大学信息科学与工程学院, 河北 秦皇岛 066004



【1】Fedotov Y V, Belov M L, Kravtsov D A, et al. Comparative laser-induced fluorescence evolution analysis of different oil pollution on the terrestrial surface [J]. IOP Conference Series: Materials Science and Engineering. 2019, 537: 022019.

【2】Jarz?bek D, Juszkiewicz W. Analysis of the impact of weather conditions on the effectiveness of oil spill recovery operation in simulated conditions (pisces II) [J]. Annual of Navigation. 2017, 24(1): 315-326.

【3】Uslu F S. Kernel parameter variation-based selective ensemble support vector data description for oil spill detection on the ocean via hyperspectral imaging [J]. Journal of Applied Remote Sensing. 2017, 11(3): 032404.

【4】Liu D L, Zhang J Q, Wang X R. Reference spectral signature selection using density-based cluster for automatic oil spill detection in hyperspectral images [J]. Optics Express. 2016, 24(7): 7411-7425.

【5】Otremba Z, Piskozub J. Modelling the bidirectional reflectance distribution function (BRDF) of seawater polluted by an oil film [J]. Optics Express. 2004, 12(8): 1671-1676.

【6】Sun L J, Tian Z S, Ren X Y, et al. Modeling the bidirectional reflectance distribution function of seawater with spilt oil [J]. Acta Physica Sinica. 2014, 63(13): 134211.
孙兰君, 田兆硕, 任秀云, 等. 溢油海水双向反射分布函数的建模及仿真 [J]. 物理学报. 2014, 63(13): 134211.

【7】Geng Y F, Chen X, Jin W, et al. Influence of seawater refractive index on the precision of oil film thickness measurement by differential laser triangulation [J]. Chinese Journal of Lasers. 2015, 42(4): 0408004.
耿云飞, 陈曦, 金文, 等. 海水折射率对差分激光三角法油膜厚度测量精度的影响 [J]. 中国激光. 2015, 42(4): 0408004.

【8】Wu D, Lü Q N, Ge B Z. Development of oil film thickness sensor based on buoy [J]. Chinese Journal of Lasers. 2014, 41(1): 0108004.
吴頔, 吕且妮, 葛宝臻. 浮标式油膜厚度测量传感器的研制 [J]. 中国激光. 2014, 41(1): 0108004.

【9】Chen Y N, Yang R F, Zhao N J, et al. Experimental study on quantitative detection of oil slick thickness based on laser-induced fluorescence [J]. Spectroscopy and Spectral Analysis. 2019, 39(11): 3646-3652.

【10】Zhu Q S, Hao S G, Luo N N, et al. Detection and quantification of vegetable oil adulteration based on laser-induced fluorescence spectroscopy [J]. Chinese Journal of Lasers. 2019, 46(12): 1211002.
朱泉水, 郝仕国, 罗宁宁, 等. 基于激光诱导荧光的植物油掺假检测与量化分析 [J]. 中国激光. 2019, 46(12): 1211002.

【11】Luan X N, Zhang F, Guo J J, et al. Polarization characterization of laser-induced fluorescence from the simulated oil samples based on polar decomposition of Mueller matrix [J]. spectroscopy and spectral analysis. 2018, 37(7): 2092-2099.

【12】Glassner A S. A model for fluorescence and phosphorescence [M]. ∥ Sakas G, Müller S, Shirley P, et al. Photorealistic Rendering Techniques. Focus on Computer Graphics (Tutorials and Perspectives in Computer Graphics). Berlin, Heidelberg: Springer. 1995, 60-70.

【13】Hullin M B, Hanika J, Ajdin B, et al. Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions [J]. ACM Transactions on Graphics. 2010, 29(4): 97.

【14】Sun L J. Research on remote sensing technology of ocean environmental parameters based on laser induced fluorescence [D]. Harbin: Harbin Institute of Technology. 2016, 41-64.
孙兰君. 基于激光诱导荧光的海洋环境参量遥感探测技术研究 [D]. 哈尔滨: 哈尔滨工业大学. 2016, 41-64.

【15】Steinvall O. Effects of target shape and reflection on laser radar cross sections [J]. Applied Optics. 2000, 39(24): 4381-4391.

【16】Wang L H, Jacques S L, Zheng L Q. MCML: Monte Carlo modeling of light transport in multi-layered tissues [J]. Computer Methods and Programs in Biomedicine. 1995, 47(2): 131-146.

【17】Morel A, Antoine D, Gentili B. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function [J]. Applied Optics. 2002, 41(30): 6289-6306.

【18】Churmakov D Y, Meglinski I V, Piletsky S A, et al. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation [J]. Journal of Physics D: Applied Physics. 2003, 36(14): 1722-1728.

【19】Zhang Y L, Wang Y M, Huang A P. Influence of suspended particles based on Mie theory on underwater laser transmission [J]. Chinese Journal of Lasers. 2018, 45(5): 0505002.
张莹珞, 王英民, 黄爱萍. 米氏理论下悬浮粒子对水下激光传输的影响 [J]. 中国激光. 2018, 45(5): 0505002.

【20】McShane M J, Rastegar S, Pishko M, et al. Monte Carlo modeling for implantable fluorescent analyte sensors [J]. IEEE Transactions on Bio-Medical Engineering. 2000, 47(5): 624-632.

【21】Ralston C Y, Wu X, Mullins O C. Quantum yields of crude oils [J]. Applied Spectroscopy. 1996, 50(12): 1563-1568.

【22】Pogue B W, Burke G. Fiber-optic bundle design for quantitative fluorescence measurement from tissue [J]. Applied Optics. 1998, 37(31): 7429-7436.

【23】Otremba Z. Oil droplets as light absorbents in seawater [J]. Optics Express. 2007, 15(14): 8592-8597.

【24】Petzold T J. Volume scattering functions for selected ocean waters[R] . San Diego: Scripps Institution of Oceanography. 1972, 152-174.

【25】Otremba Z, Krol T. Light attenuation parameters of polydisperse oil-in-water emulsion [J]. Optica Applicata. 2001, 31(3): 599-609.

【26】Oda M, Yamashita Y, Nishimura G, et al. Quantitation of absolute concentration change in scattering media by the time-resolved microscopic beer-lambert law [J]. Advances in Experimental Medicine and Biology. 1994, 345: 861-870.


Zhang Xiaodan,Kong Deming,Yuan Li,Kong Dehan,Kong Lingfu,Jia Haiyang. BRRDF Simulation Research on Detection Parameters of Oil-in-Water Emulsion of Oil Spill on Sea Surface[J]. Acta Optica Sinica, 2020, 40(17): 1701001

张晓丹,孔德明,袁丽,孔德翰,孔令富,贾海阳. 海面溢油水包油乳化液探测参数的BRRDF仿真研究[J]. 光学学报, 2020, 40(17): 1701001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF