首页 > 论文 > 激光与光电子学进展 > 57卷 > 6期(pp:61022--1)

改进YCbCr和区域生长的多特征融合的火焰精准识别算法

Flame Identification Algorithm Based on Improved Multi-Feature Fusion of YCbCr and Region Growth

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种融合RGB、YCbCr和区域生长的火焰前景提取算法。首先,在YCbCr算法的基础上,从反光和非反光区域考虑R通道和Y通道之间的关系,避免反光和非反光区域中过多噪声对初始分割的干扰;然后,计算连通区域质心权重,自动确定种子点,对完成颜色分割的图像进行区域生长,达到精细分割的目的;最后,全面分析火焰的静态和动态特征,给出面积和周长变异系数及质心运动距离变化比等,进而将火焰与路灯、蜡烛等干扰源区分开。实验结果表明:所提方法克服了单个算法对火焰场景分析中出现的识别精度不高的缺点,同时能识别出反光和非反光区域并快速排除干扰物,减少误判。

Abstract

In this study, a novel image-processing algorithm to identify flame regions in the foreground based on the combination of the RGB, YcbCr, and seeded region growth (SRG) algorithms is proposed. First, the conventional YCbCr algorithm is improved by incorporating the relationship between the red (R channel) and luminance (Y channel) components. Accordingly, the interfering noise corresponding to the reflective and non-reflective images can be removed. Moreover, in the case of noise-corrupted images, the interference associated with initial image segmentation can be eliminated. By estimating the centroid weight of the connected region, the seed can be automatically determined, resulting in region growth for the color-segmented images, which can facilitate fine segmentation. By analyzing the static and dynamic characteristics of a flame, the variation coefficients of the area and perimeter and the ratio of the centroid movement distance can be calculated. On this basis, a flame region can be distinguished from non-flame regions such as road lamps and candles. The experiment results indicate that the proposed method can not only be used to mitigate deficiencies of the individual algorithms that provide low accuracy, but can also be applied to simultaneously recognize the reflective and non-reflective regions to reduce interference and prevent inaccurate recognition.

中国激光微信矩阵
补充资料

中图分类号:TP391.41

DOI:10.3788/LOP57.061022

所属栏目:图像处理

基金项目:长江科学院开放研究基金资助项目、重庆市质量技术监督局科研计划项目、重庆市技术创新与应用发展专项面上项目;

收稿日期:2019-09-20

修改稿日期:2019-11-19

网络出版日期:2020-03-01

作者单位    点击查看

张丹丹:武汉理工大学安全科学与应急管理学院, 湖北 武汉 430079
章光:武汉理工大学安全科学与应急管理学院, 湖北 武汉 430079
陈西江:武汉理工大学安全科学与应急管理学院, 湖北 武汉 430079
班亚:重庆市计量质量检测研究院, 重庆 401120
赵潇洒:武汉理工大学安全科学与应急管理学院, 湖北 武汉 430079
徐乐先:武汉理工大学安全科学与应急管理学院, 湖北 武汉 430079

联系人作者:张丹丹(867227042@qq.com); 陈西江(cxj_0421@163.com);

备注:长江科学院开放研究基金资助项目、重庆市质量技术监督局科研计划项目、重庆市技术创新与应用发展专项面上项目;

【1】Wang Y, Shen H, Xia H S, et al. An dynamic strain subset selection algorithm in digital image correlation method [J]. Laser & Optoelectronics Progress. 2018, 55(9): 091001.
王莹, 沈峘, 夏瀚笙, 等. 数字图像相关法中一种动态应变子区选择算法 [J]. 激光与光电子学进展. 2018, 55(9): 091001.

【2】Kim Y H, Kim A, Jeong H Y. RGB color model based the fire detection algorithm in video sequences on wireless sensor network [J]. International Journal of Distributed Sensor Networks. 2014, 10(4): 923609.

【3】Lu S H, Huang H Z, Zhang H Z, et al. Comprehensive performance evaluation for video surveillance cameras [J]. Laser & Optoelectronics Progress. 2015, 52(9): 091102.
卢树华, 黄鸿志, 张鸿洲, 等. 视频监控摄像机性能参数综合评价研究 [J]. 激光与光电子学进展. 2015, 52(9): 091102.

【4】Pu Y R, Chen Y J, Lee S H. Fire recognition based on correlation of segmentations by image processing techniques [J]. Machine Vision and Applications. 2015, 26(7/8): 849-856.

【5】Chen T H, Wu P H, Chiou Y C. An early fire-detection method based on image processing . [C]∥2004 International Conference on Image Processing, October 24-27, 2004, Singapore. New York: IEEE. 2004, 1707-1710.

【6】Chen T H, Kao C L, Chang S M. An intelligent real-time fire-detection method based on video processing . [C]∥IEEE 37th Annual 2003 International Carnahan Conference on Security Technology, October 14-16, 2003, Taipei, Taiwan, China. New York: IEEE. 2003, 104-111.

【7】Luo Y Y. The research on forest fire detection technology based on YCbCr color space [D]. Changsha: Central South University of Forestry & Technology. 2013.
罗媛媛. 基于YCbCr颜色空间的森林火灾探测技术的研究 [D]. 长沙: 中南林业科技大学. 2013.

【8】Seo J, Kang M, Kim C H, et al. An optimal many-core model-based supercomputing for accelerating video-equipped fire detection [J]. The Journal of Supercomputing. 2015, 71(6): 2275-2308.

【9】Truong T X, Kim J M. Fire flame detection in video sequences using multi-stage pattern recognition techniques [J]. Engineering Applications of Artificial Intelligence. 2012, 25(7): 1365-1372.

【10】Zhu Z L, Wang J F. Image segmentation based on adaptive fuzzy C-means and post processing correction [J]. Laser & Optoelectronics Progress. 2018, 55(1): 011004.
朱占龙, 王军芬. 基于自适应模糊C均值与后处理的图像分割算法 [J]. 激光与光电子学进展. 2018, 55(1): 011004.

【11】Xu G X, Bu Y M, Wang L Q. A color image segmentation algorithm by integrating watershed with automatic seeded region growing and merging [J]. Proceedings of SPIE. 2011, 8200: 820018.

【12】Dai J. Research and application on the algorithm of fast fire detection [D]. Mianyang: Southwest University of Science and Technology. 2017.
戴静. 火焰图像快速检测方法研究及应用 [D]. 绵阳: 西南科技大学. 2017.

【13】Chen T Y, Zeng S T, Wu H B. Flame image segmentation method based on YCbCr color space [J]. Transducer and Microsystem Technologies. 2011, 30(10): 62-64.
陈天炎, 曾思通, 吴海彬. 基于YCbCr颜色空间的火焰图像分割方法 [J]. 传感器与微系统. 2011, 30(10): 62-64.

【14】Ko B C, Cheong K H, Nam J Y. Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks [J]. Fire Safety Journal. 2010, 45(4): 262-270.

【15】Computer vision based fire detection software [2019-09-18].http:∥signal. ee. bilkent. edu.tr/VisiFire/.[2019-09-18]. 0.

【16】Liu F. Research on video-oriented flame detection and tracking algorithm [D]. Nanchang: Nanchang Hangkong University. 2018.
刘芳. 面向视频的火焰检测与跟踪算法研究 [D]. 南昌: 南昌航空大学. 2018.

【17】Xiong G L, Su Z X, Liu J P, et al. Matlab implementation of indentifying characteristics of flame [J]. Computer Engineering and Science. 2013, 35(7): 131-136.
熊国良, 苏兆熙, 刘举平, 等. 火焰特性识别的Matlab实现方法 [J]. 计算机工程与科学. 2013, 35(7): 131-136.

【18】Han M L. Research and simulation of flame recognition algorithm based on digital image Science & Technology Ecnony Market[J]. 0, 2018(9): 11-12.
韩美林. 基于数字图像的火焰识别算法研究与仿真 科技经济市场[J]. 0, 2018(9): 11-12.

【19】Zhao R H, Wang H L, Zhu G. Research on segmentation and target recognition method of fire image Mechanical Engineer[J]. 0, 2019(7): 45-48.
赵汝海, 王宏亮, 朱广. 火灾图像分割与目标识别方法研究 机械工程师[J]. 0, 2019(7): 45-48.

引用该论文

Zhang Dandan,Zhang Guang,Chen Xijiang,Ban Ya,Zhao Xiaosa,Xu Lexian. Flame Identification Algorithm Based on Improved Multi-Feature Fusion of YCbCr and Region Growth[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061022

张丹丹,章光,陈西江,班亚,赵潇洒,徐乐先. 改进YCbCr和区域生长的多特征融合的火焰精准识别算法[J]. 激光与光电子学进展, 2020, 57(6): 061022

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF