首页 > 论文 > 激光与光电子学进展 > 57卷 > 8期(pp:82801--1)

一种改进的矩匹配高光谱图像非均匀校正算法

An Improved Moment Matching Algorithm for Non-Uniform Correction of Hyperspectral Images

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为进一步抑制遥感图像的非均匀噪声,首先分析了空间遥感高光谱图像条带噪声产生的原因及噪声模型,进而提出一种基于窗口阈值判决的改进矩匹配算法。选取相对平坦,且条带噪声与背景对比较明显的区域进行阈值估算,并选取参考均值、标准差和条带阈值判决对条带噪声进行矩匹配处理。实验结果表明,所提算法的峰值信噪比相对传统方法至少提高了6.2163 dB,均方误差最小降低了5.9630,结构相似度至少提高了0.254。与传统方法相比,采用所提方法处理后的图像变异逆系数有所提高,图像横向梯度与标准差有所降低,该方法还去除了图像中的条带噪声,保留了原始图像的细节信息。

Abstract

In order to further restrain the non-uniform noise of remote sensing images, we analyze the the causes and noise models of stripe noise in the spatial remote sensing hyperspectral image, and then propose a moment matching algorithm based on the window threshold decision. The window threshold can be estimated based on the flat region and the obviously striped region. Further, moment matching can be achieved with respect to the images containing stripe noise based on the referent mean, standard deviation, and stripe threshold determination. The experimental results denote that compared with the traditional methods, the peak signal-to-noise ratio increases by at least 6.2163 dB, the mean-square error decreases by at least 5.9630, and the structural similarity increases by at least 0.254. When compared with the traditional methods, an improved image variation inverse coefficient can be obtained using the proposed method; further, the lateral gradient and standard deviation of the image decrease, the image stripe noise is effectively removed, and the original image details are preserved.

中国激光微信矩阵
补充资料

中图分类号:TP751.1

DOI:10.3788/LOP57.082801

所属栏目:遥感与传感器

基金项目:国家重点研发项目、吉林省重点科技研发项目;

收稿日期:2019-10-01

修改稿日期:2019-11-15

网络出版日期:2020-04-01

作者单位    点击查看

杨赞伟:中国科学院长春光学精密机械与物理研究所空间新技术研究部, 吉林 长春 130033中国科学院大学, 北京 100049
郑亮亮:中国科学院长春光学精密机械与物理研究所空间新技术研究部, 吉林 长春 130033
吴勇:中国科学院长春光学精密机械与物理研究所空间新技术研究部, 吉林 长春 130033
曲宏松:中国科学院长春光学精密机械与物理研究所空间新技术研究部, 吉林 长春 130033

联系人作者:郑亮亮(adqe@163.com)

备注:国家重点研发项目、吉林省重点科技研发项目;

【1】Huo L J, He B, Zhou D B. A destriping method with multi-scale variational model for remote sensing images [J]. Optics and Precision Engineering. 2017, 25(1): 198-207.
霍丽君, 何斌, 周达标. 遥感图像条带噪声的多尺度变分模型去除 [J]. 光学精密工程. 2017, 25(1): 198-207.

【2】Liu Y M. Hyperspectral image destriping based on adaptive unidirectional variation [J]. Laser & Optoelectronics Progress. 2016, 53(9): 091002.
刘亚梅. 基于自适应单向变分的高光谱图像去条带方法 [J]. 激光与光电子学进展. 2016, 53(9): 091002.

【3】Zhou D B, Li G, Wang D J, et al. Method of destriping stripe noise of aerial images based on total variation [J]. Acta Optica Sinica. 2014, 34(11): 1128003.
周达标, 李刚, 王德江, 等. 基于全变分的航空图像条带噪声消除方法 [J]. 光学学报. 2014, 34(11): 1128003.

【4】Rakwatin P, Takeuchi W, Yasuoka Y. Stripe noise reduction in MODIS data by combining histogram matching with facet filter [J]. IEEE Transactions on Geoscience and Remote Sensing. 2007, 45(6): 1844-1856.

【5】Gadallah F L, Csillag F. Smith E J M. Destriping multisensor imagery with moment matching [J]. International Journal of Remote Sensing. 2000, 21(12): 2505-2511.

【6】Zhang X, Tang S L. Destriping remote sensing imagery by wavelet moment matching algorithm [J]. Remote Sensing Technology and Application. 2018, 33(2): 305-312.
张霞, 汤森林. 一种去除遥感图像条带噪声的小波矩匹配方法 [J]. 遥感技术与应用. 2018, 33(2): 305-312.

【7】Li W L, Li K, Peng D, et al. Analysis and removal of stripe noise in AGRI remote sensing images [J]. Acta Optica Sinica. 2019, 39(12): 1228004.
李文力, 李凯, 彭迪, 等. AGRI遥感图像条带噪声分析与去除研究 [J]. 光学学报. 2019, 39(12): 1228004.

【8】Chen J S, Shao Y, Guo H D, et al. Destriping CMODIS data by power filtering [J]. IEEE Transactions on Geoscience and Remote Sensing. 2003, 41(9): 2119-2124.

【9】Infante S O. Wavelet analysis for the elimination of striping noise in satellite images [J]. Optical Engineering. 2001, 40(7): 1309-1314.

【10】Bouali M, Ladjal S. Toward optimal destriping of MODIS data using a unidirectional variational model [J]. IEEE Transactions on Geoscience and Remote Sensing. 2011, 49(8): 2924-2935.

【11】Zheng F B, Zhi J J, Gao H L, et al. Improved destriping algorithm of hyperspectral images [J]. Computer Science. 2010, 37(5): 265-267.
郑逢斌, 支晶晶, 高海亮, 等. 一种高光谱图像条带噪声去除改进算法 [J]. 计算机科学. 2010, 37(5): 265-267.

【12】Nie K M, Xu J T, Gao Z Y. A 128-stage CMOS TDI image sensor with on-chip digital accumulator [J]. IEEE Sensors Journal. 2016, 16(5): 1319-1324.

【13】Guo L L, Wu Z P, Zhang L G, et al. Destriping of remote sensing images with applications to push-broom-type cameras [J]. Acta Optica Sinica. 2013, 33(8): 0828001.
郭玲玲, 吴泽鹏, 张立国, 等. 推扫式遥感相机图像条带噪声去除方法 [J]. 光学学报. 2013, 33(8): 0828001.

【14】Dong J H, Hu Q Q, Sun D S. Techniques of depressing image noise in laser imaging tracking system [J]. Chinese Journal of Lasers. 2011, 38(1): 0109002.
董吉辉, 胡企铨, 孙东松. 空间激光成像跟踪系统中的图像噪声抑制技术 [J]. 中国激光. 2011, 38(1): 0109002.

【15】Chang Y, Yan L X, Wu T, et al. Remote sensing image stripe noise removal: from image decomposition perspective [J]. IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(12): 7018-7031.

【16】Zhang S W, Xiang W, Xu B S, et al. Stripe noise removal for infrared images using guided filter [J]. Proceedings of SPIE. 2016, 10157: 101572R.

【17】Ju H H, Liu Z G, Jiang J J, et al. Removal of hyperspectral stripe noise using low-pass filtered residual images [J]. Acta Optica Sinica. 2018, 38(12): 1228002.
鞠荟荟, 刘志刚, 姜江军, 等. 基于低通滤波残差图的高光谱条带噪声去除 [J]. 光学学报. 2018, 38(12): 1228002.

引用该论文

Yang Zanwei,Zheng Liangliang,Wu Yong,Qu Hongsong. An Improved Moment Matching Algorithm for Non-Uniform Correction of Hyperspectral Images[J]. Laser & Optoelectronics Progress, 2020, 57(8): 082801

杨赞伟,郑亮亮,吴勇,曲宏松. 一种改进的矩匹配高光谱图像非均匀校正算法[J]. 激光与光电子学进展, 2020, 57(8): 082801

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF