首页 > 论文 > 激光与光电子学进展 > 57卷 > 9期(pp:91405--1)

激光功率对钴基/GO复合熔覆层力学性能的影响

Effect of Laser Power on the Mechanical Properties of the Cobalt-Based/GO Composite Coatings

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用激光熔覆技术在TC4钛合金表面制备钴基/氧化石墨烯(GO)复合熔覆层,保持扫描速度V1=6 mm/s,送粉速率V2=1.2 r/min,光斑直径D=4 mm不变,设置4组功率P1=1000 W、P2=1300 W、P3=1600 W、P4=1900 W,研究了激光功率对钴基/GO复合熔覆层微观组织及力学性能的影响。结果表明:熔覆层中主要包含TiC、Co2Ti、γ-Co、α-Ti和Cr3C2相,GO在低功率下与TC4基体原位生成TiC,同时与半固态的Co2Ti组织共同作用,GO在高功率下迅速分解,熔覆层成分主要为Co2Ti组织。当激光功率为P2=1300 W时熔覆效果最佳,成形组织均匀,与TC4基体呈冶金结合,熔覆层硬度高达1100 HV0.2,几乎是基体硬度390 HV0.2的2.82倍。

Abstract

In this study, a cobalt-based/graphene oxide (GO) composite coating has been fabricated on the surface of the TC4 substrate/titanium alloy via laser cladding. The scanning speed of V1=6 mm/s, feeding rate of V2=1.2 r/min, and spot diameter of D=4 mm remain constant, and four different laser power settings of P1 =1000 W, P2=1300 W, P3=1600 W, and P4=1900 W are selected to investigate the effect of laser power on the microstructure and mechanical properties of the cobalt-based/GO composite coating. The results prove that the cladding layer mainly comprises the TiC, Co2Ti, γ-Co, α-Ti, and Cr3C2 phases. GO reacted with the TC4 matrix under the reaction of low power to in situ composites TiC. Furthermore, it interacts with the semi-solid Co2Ti structure and decomposes rapidly under a high-power reaction, mainly generating the Co2Ti structure. When the laser power is P2=1300 W, the cladding effect is optimal and the forming structure is uniform; subsequently, the cladding cobalt-based/GO coating is metallurgically bonded to the TC4 substrate. The microhardness of the cladding layer is 1100 HV0.2, which is 2.82 times that of the matrix having a microhardness of 390 HV0.2.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TC178

DOI:10.3788/LOP57.091405

所属栏目:激光器与激光光学

基金项目:国家自然科学基金;

收稿日期:2019-07-26

修改稿日期:2019-09-27

网络出版日期:2020-05-01

作者单位    点击查看

王航:江南大学机械工程学院, 江苏 无锡 214122
武美萍:江南大学机械工程学院, 江苏 无锡 214122
陆佩佩:江南大学机械工程学院, 江苏 无锡 214122
叶秀:江南大学机械工程学院, 江苏 无锡 214122

联系人作者:武美萍(wmp169@jiangnan.edu.cn)

备注:国家自然科学基金;

【1】Feng X T, Gu H, Zhou S F, et al. Microstructure and electrochemical corrosion behavior of TC4 titanium alloy cladding layer prepared with powder feeding laser additive manufacturing [J]. Chinese Journal of Lasers. 2019, 46(3): 0302003.
冯晓甜, 顾宏, 周圣丰, 等. 送粉式激光增材制造TC4钛合金熔覆层组织及电化学腐蚀行为的研究 [J]. 中国激光. 2019, 46(3): 0302003.

【2】Gao Q S, Yan H, Qin Y, et al. Self-lubricating wear resistant composite coating Ti-Ni+TiN+MoS2/TiS prepared on Ti-6Al-4V alloy by laser cladding [J]. Chinese Journal of Materials Research. 2018, 32(12): 921-928.
高秋实, 闫华, 秦阳, 等. 钛合金表面激光熔覆Ti-Ni+TiN+MoS2/TiS自润滑复合涂层 [J]. 材料研究学报. 2018, 32(12): 921-928.

【3】Wei C Q. Research on modification of in situ synthesized Ti3Al based ceramic composite coating on titanium alloy surface by laser cladding [D]. Dalian: Dalian University of Technology. 2018.
位超群. 钛合金表面激光熔覆原位合成Ti3Al基陶瓷复合涂层改性研究 [D]. 大连: 大连理工大学. 2018.

【4】Zhu G X, Zhang A F, Li D C. Effect of process parameters on surface smoothness in laser cladding [J]. Chinese Journal of Lasers. 2010, 37(1): 296-301.
朱刚贤, 张安峰, 李涤尘. 激光熔覆工艺参数对熔覆层表面平整度的影响 [J]. 中国激光. 2010, 37(1): 296-301.

【5】Liu Y N, Sun R L, Niu W, et al. Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface [J]. Chinese Journal of Lasers. 2019, 46(1): 0102010.
刘亚楠, 孙荣禄, 牛伟, 等. Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能 [J]. 中国激光. 2019, 46(1): 0102010.

【6】Cheng W, Wu M P, Tang Y H, et al. Laser cladding process of 42CrMo surface with single-pass [J]. Laser & Optoelectronics Progress. 2019, 56(4): 041402.
程伟, 武美萍, 唐又红, 等. 42CrMo合金表面单道轨迹激光熔覆工艺研究 [J]. 激光与光电子学进展. 2019, 56(4): 041402.

【7】Li C Y, Kou S Z, Zhao Y C, et al. Microstructure and mechanical property of laser clad Co-based alloy coatings on titanium alloy [J]. Transactions of Materials and Heat Treatment. 2015, 36(2): 171-178.
李春燕, 寇生中, 赵燕春, 等. 钛合金表面激光熔覆钴基合金层的组织及力学性能 [J]. 材料热处理学报. 2015, 36(2): 171-178.

【8】Xu G J, Yin D Y, Hang Z X, et al. Functionally gradient material coating of Co-based alloy and VC using laser cladding [J]. Laser & Optoelectronics Progress. 2012, 49(6): 061404.
徐国建, 殷德洋, 杭争翔, 等. 激光熔覆钴基合金与碳化钒的功能梯度层 [J]. 激光与光电子学进展. 2012, 49(6): 061404.

【9】Li D D, Pan B, Li C G, et al. Process analysis and properties of laser cladding Al2O3-TiO2 coating [J]. Applied Laser. 2016, 36(1): 9-13.
李东东, 潘斌, 李崇桂, 等. 激光熔覆Al2O3-TiO2涂层的工艺与性能研究 [J]. 应用激光. 2016, 36(1): 9-13.

【10】Kumar S, Mandal A, Das A K, et al. Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy [J]. Surface and Coatings Technology. 2018, 349: 37-49.

【11】Feng S R, Tang H B, Zhang S Q, et al. Microstructure and wear resistance of laser clad TiB-TiC/TiNi-Ti2Ni intermetallic coating on titanium alloy [J]. Transactions of Nonferrous Metals Society of China. 2012, 22(7): 1667-1673.

【12】Zhang C H, Wu S Q, Liu K, et al. Effect of rare earth on microstructure and properties of Co-based alloy by laser cladding [J]. Journal of Shenyang University of Technology. 2018, 40(5): 492-497.
张春华, 武世奇, 刘凯, 等. 稀土对激光熔覆Co基合金组织及性能的影响 [J]. 沈阳工业大学学报. 2018, 40(5): 492-497.

【13】Ma H B, Zhang W P. Microstructure and properties of Co-based alloy laser clad layer on titanium alloy surface [J]. Rare Metal Materials and Engineering. 2010, 39(12): 2189-2192.
马海波, 张维平. 钛合金表面激光熔覆钴基复合涂层的组织和性能 [J]. 稀有金属材料与工程. 2010, 39(12): 2189-2192.

引用该论文

Wang Hang,Wu Meiping,Lu Peipei,Ye Xiu. Effect of Laser Power on the Mechanical Properties of the Cobalt-Based/GO Composite Coatings[J]. Laser & Optoelectronics Progress, 2020, 57(9): 091405

王航,武美萍,陆佩佩,叶秀. 激光功率对钴基/GO复合熔覆层力学性能的影响[J]. 激光与光电子学进展, 2020, 57(9): 091405

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF