首页 > 论文 > Chinese Optics Letters > 17卷 > 7期(p:070602)

Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We propose and experimentally demonstrate a novel Raman-based distributed fiber-optics temperature sensor (RDTS) for improving the temperature measurement accuracy and engineering applicability. The proposed method is based on double-ended demodulation with a reference temperature and dynamic dispersion difference compensation method, which can suppress the effect of local external physics perturbation and intermodal dispersion on temperature demodulation results. Moreover, the system can omit the pre-calibration process by using the reference temperature before the temperature measurement. The experimental results of dispersion compensation indicate that the temperature accuracy optimizes from 5.6°C to 1.2°C, and the temperature uncertainty decreases from 16.8°C to 2.4°C. Moreover, the double-ended configuration can automatically compensate the local external physics perturbation of the sensing fiber, which exhibits a distinctive improvement.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/COL201917.070602

所属栏目:Fiber optics and optical communications

基金项目:This work was supported by the National Natural Science Foundation of China (NSFC) (Nos.?61527819 and 61875146), the Research Project by Shanxi Scholarship Council of China (Nos.?2016-036 and 2017-052), the Key Science and Technology Research Project Based on Coal of Shanxi Province (No.?MQ2014-09), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and the Program for Sanjin Scholar.

收稿日期:2018-11-07

录用日期:2019-03-28

网络出版日期:2019-07-01

作者单位    点击查看

Jian Li:Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, ChinaCollege of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Yang Xu:Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, ChinaCollege of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Mingjiang Zhang:Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, ChinaCollege of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Jianzhong Zhang:Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, ChinaCollege of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Lijun Qiao:Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, ChinaCollege of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Tao Wang:Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, ChinaCollege of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China

联系人作者:Mingjiang Zhang(zhangmingjiang@tyut.edu.com)

备注:This work was supported by the National Natural Science Foundation of China (NSFC) (Nos.?61527819 and 61875146), the Research Project by Shanxi Scholarship Council of China (Nos.?2016-036 and 2017-052), the Key Science and Technology Research Project Based on Coal of Shanxi Province (No.?MQ2014-09), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and the Program for Sanjin Scholar.

【1】M. A. Soto, J. A. Ramírez and L. Thévenaz. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Nat. Commun. 7, (2016).

【2】M. J. Zhang, X. Y. Bao, J. Chai, Y. N. Zhang, R. X. Liu, H. Liu, Y. Liu and J. Z. Zhang. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Chin. Opt. Lett. 15, (2017).M. J. Zhang, X. Y. Bao, J. Chai, Y. N. Zhang, R. X. Liu, H. Liu, Y. Liu and J. Z. Zhang. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Chin. Opt. Lett. 15, (2017).

【3】Z. G. Qin, L. Chen and X. Y. Bao. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. IEEE Photon. Technol. Lett. 24, (2012).

【4】M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher and S. M. Oak. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. IEEE Sensors J. 16, (2016).

【5】D. Jong, J. D. Slingerland and V. D. Van. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Atmos. Meas. Tech. 8, (2015).

【6】D. Hwang, D. J. Yoon, I. B. Kwon, D. C. Seo and Y. Chung. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Opt. Express. 18, (2010).

【7】X. Bao and L. Chen. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Sensors. 11, (2011).

【8】B. N. Sun, J. Chang and J. Lian. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Opt. Commun. 306, (2013).

【9】D. Hwang, D. J. Yoon, I. B. Kwon, D. C. Seo and Y. Chung. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Opt. Express. 18, (2010).

【10】J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale and N. Park. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. IEEE Photon. Technol. Lett. 18, (2006).

【11】M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher and S. M. Oak. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. IEEE Sensors J. 16, (2016).

【12】M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini and D. P. Fabrizio. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Opt. Lett. 36, (2011).

【13】J. Li, Y. T. Li, M. J. Zhang, Y. Liu, J. Z. Zhang, B. Q. Yan, D. Wang and B. Q. Jin. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Photon. Sensors. 8, (2017).

【14】D. Hwang, D. J. Yoon, I. B. Kwon, D. C. Seo and Y. Chung. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Opt. Express. 18, (2010).

【15】Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun and Y. N. Liu. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Opt. Quantum Electron. 45, (2013).

【16】M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli and G. Bolognini. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. IEEE Photon. Technol. Lett. 23, (2011).

【17】Y. P. Liu, L. Ma, C. Yang, W. J. Tong and Z. Y. He. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Opt. Express. 26, (2018).

【18】B. Culshaw and A. Kersey. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. J. Lightwave Technol. 26, (2008).

【19】Z. X. Zhang, S. Z. Jin, J. F. Wang, H. L. Liu, Z. Z. Sun, H. P. Gong, X. D. Yu and W. S. Zhang. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Chin. J. Laser. 37, (2010).Z. X. Zhang, S. Z. Jin, J. F. Wang, H. L. Liu, Z. Z. Sun, H. P. Gong, X. D. Yu and W. S. Zhang. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Chin. J. Laser. 37, (2010).

【20】W. J. Wang and G. P. Chang. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion. Photon. Sensors. 3, (2013).

引用该论文

Jian Li,  Yang Xu,  Mingjiang Zhang,  Jianzhong Zhang,  Lijun Qiao,  Tao Wang, "Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion," Chinese Optics Letters 17(7), 070602 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF